111 research outputs found

    Detection of Vibrio cholerae and Acanthamoeba species from same natural water samples collected from different cholera endemic areas in Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vibrio cholerae </it>O1 and <it>V. cholerae </it>O139 infect humans, causing the diarrheal and waterborne disease cholera, which is a worldwide health problem. <it>V. cholerae </it>and the free-living amoebae <it>Acanthamoeba </it>species are present in aquatic environments, including drinking water and it has shown that <it>Acanthamoebae </it>support bacterial growth and survival. Recently it has shown that <it>Acanthamoeba </it>species enhanced growth and survival of <it>V. cholerae </it>O1 and O139. Water samples from different cholera endemic areas in Sudan were collected with the aim to detect both <it>V. cholerae </it>and <it>Acanthamoeba </it>species from same natural water samples by polymerase chain reaction (PCR).</p> <p>Findings</p> <p>For the first time both <it>V. cholerae </it>and <it>Acanthamoeba </it>species were detected in same natural water samples collected from different cholera endemic areas in Sudan. 89% of detected <it>V. cholerae </it>was found with <it>Acanthamoeba </it>in same water samples.</p> <p>Conclusions</p> <p>The current findings disclose <it>Acanthamoedae </it>as a biological factor enhancing survival of <it>V. cholerae </it>in nature.</p

    The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales

    Get PDF
    Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale-specific patterns, including different environmental drivers, diverse life histories, dispersal, and non-stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long-term drivers and may miss the importance of short-term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems

    Application of Homozygosity Haplotype Analysis to Genetic Mapping with High-Density SNP Genotype Data

    Get PDF
    BACKGROUND: In families segregating a monogenic genetic disorder with a single disease gene introduction, patients share a mutation-carrying chromosomal interval with identity-by-descent (IBD). Such a shared chromosomal interval or haplotype, surrounding the actual pathogenic mutation, is typically detected and defined by multipoint linkage and phased haplotype analysis using microsatellite or SNP genotype data. High-density SNP genotype data presents a computational challenge for conventional genetic analyses. A novel non-parametric method termed Homozygosity Haplotype (HH) was recently proposed for the genome-wide search of the autosomal segments shared among patients using high density SNP genotype data. METHODOLOGY/PRINCIPAL FINDINGS: The applicability and the effectiveness of HH in identifying the potential linkage of disease causative gene with high-density SNP genotype data were studied with a series of monogenic disorders ascertained in eastern Canadian populations. The HH approach was validated using the genotypes of patients from a family affected with a rare autosomal dominant disease Schnyder crystalline corneal dystrophy. HH accurately detected the approximately 1 Mb genomic interval encompassing the causative gene UBIAD1 using the genotypes of only four affected subjects. The successful application of HH to identify the potential linkage for a family with pericentral retinal disorder indicates that HH can be applied to perform family-based association analysis by treating affected and unaffected family members as cases and controls respectively. A new strategy for the genome-wide screening of known causative genes or loci with HH was proposed, as shown the applications to a myoclonus dystonia and a renal failure cohort. CONCLUSIONS/SIGNIFICANCE: Our study of the HH approach demonstrates that HH is very efficient and effective in identifying potential disease linked region. HH has the potential to be used as an efficient alternative approach to sequencing or microsatellite-based fine mapping for screening the known causative genes in genetic disease study

    Cage Matching: Head to Head Competition Experiments of an Invasive Plant Species from Different Regions as a Means to Test for Differentiation

    Get PDF
    Many hypotheses are prevalent in the literature predicting why some plant species can become invasive. However, in some respects, we lack a standard approach to compare the breadth of various studies and differentiate between alternative explanations. Furthermore, most of these hypotheses rely on ‘changes in density’ of an introduced species to infer invasiveness. Here, we propose a simple method to screen invasive plant species for potential differences in density effects between novel regions. Studies of plant competition using density series are a fundamental tool applied to virtually every aspect of plant population ecology to better understand evolution. Hence, we use a simple density series with substitution contrasting the performance of Centaurea solstitialis in monoculture (from one region) to mixtures (seeds from two regions). All else being equal, if there is no difference between the introduced species in the two novel regions compared, Argentina and California, then there should be no competitive differences between intra and inter-regional competition series. Using a replicated regression design, seeds of each species were sown in the greenhouse at 5 densities in monoculture and mixed and grown till onset of flowering. Centaurea seeds from California had higher germination while seedlings had significantly greater survival than Argentina. There was no evidence for density dependence in any measure for the California region but negative density dependence was detected in the germination of seeds from Argentina. The relative differences in competition also differed between regions with no evidence of differential competitive effects of seeds from Argentina in mixture versus monoculture while seeds from California expressed a relative cost in germination and relative growth rate in mixtures with Argentina. In the former instance, lack of difference does not mean ‘no ecological differences’ but does suggest that local adaptation in competitive abilities has not occurred. Importantly, this method successfully detected differences in the response of an invasive species to changes in density between novel regions which suggests that it is a useful preliminary means to explore invasiveness

    Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2

    Get PDF
    Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ,0.5–250 mmol kg21 (i.e. ,20–6000 matm pCO2) at three different temperatures (i.e. 10, 15, 20uC for E. huxleyi and 15, 20, 25uC for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain’s temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean

    Integrating ecology and evolutionary theory. A game changer for biodiversity conservation?

    Get PDF
    Currently, one of the central arguments in favour of biodiversity conservation is that it is essential for the maintenance of ecosystem services, that is, the benefits that people receive from ecosystems. However, the relationship between ecosystem services and biodiversity is contested and needs clarification. The goal of this chapter is to spell out the interaction and reciprocal influences between conservation science, evolutionary biology, and ecology, in order to understand whether a stronger integration of evolutionary and ecological studies might help clarify the interaction between biodiversity and ecosystem functioning as well as influence biodiversity conservation practices. To this end, the eco-evolutionary feedback theory proposed by David Post and Eric Palkovacs is analysed, arguing that it helps operationalise niche construction theory and develop a more sophisticated understanding of the relationship between ecosystem functioning and biodiversity. Finally, it is proposed that by deepening the integration of ecological and evolutionary factors in our understanding of ecosystem functioning, the eco-evolutionary feedback theory is supportive of an “evolutionary-enlightened management” of biodiversity within the ecosystem services approach.info:eu-repo/semantics/publishedVersio

    Shrub Invasion Decreases Diversity and Alters Community Stability in Northern Chihuahuan Desert Plant Communities

    Get PDF
    BACKGROUND:Global climate change is rapidly altering species range distributions and interactions within communities. As ranges expand, invading species change interactions in communities which may reduce stability, a mechanism known to affect biodiversity. In aridland ecosystems worldwide, the range of native shrubs is expanding as they invade and replace native grassland vegetation with significant consequences for biodiversity and ecosystem functioning. METHODOLOGY:We used two long-term data sets to determine the effects of shrub encroachment by Larrea tridentata on subdominant community composition and stability in formerly native perennial grassland dominated by Bouteloua eriopoda in New Mexico, USA. PRINCIPAL FINDINGS:Our results indicated that Larrea invasion decreased species richness during the last 100 years. We also found that over shorter temporal scales species-poor subdominant communities in areas invaded by Larrea were less stable (more variable in time) compared to species rich communities in grass-dominated vegetation. Compositional stability increased as cover of Bouteloua increased and decreased as cover of Larrea increased. SIGNIFICANCE:Changes in community stability due to altered interspecific interactions may be one mechanism by which biodiversity declines in grasslands following shrub invasion. As global warming increases, shrub encroachment into native grasslands worldwide will continue to alter species interactions and community stability both of which may lead to a decline in biodiversity

    Contrasted Effects of Diversity and Immigration on Ecological Insurance in Marine Bacterioplankton Communities

    Get PDF
    The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local “physiological insurance” may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations

    Rising nutrient-pulse frequency and high UVR strengthen microbial interactions

    Get PDF
    Solar radiation and nutrient pulses regulate the ecosystem’s functioning. However, little is known about how a greater frequency of pulsed nutrients under high ultraviolet radiation (UVR) levels, as expected in the near future, could alter the responses and interaction between primary producers and decomposers. In this report, we demonstrate through a mesocosm study in lake La Caldera (Spain) that a repeated (press) compared to a one-time (pulse) schedule under UVR prompted higher increases in primary (PP) than in bacterial production (BP) coupled with a replacement of photoautotrophs by mixotrophic nanoflagellates (MNFs). The mechanism underlying these amplified phytoplanktonic responses was a dual control by MNFs on bacteria through the excretion of organic carbon and an increased top-down control by bacterivory. We also show across a 6-year whole-lake study that the changes from photoautotrophs to MNFs were related mainly to the frequency of pulsed nutrients (e.g. desert dust inputs). Our results underscore how an improved understanding of the interaction between chronic and stochastic environmental factors is critical for predicting ongoing changes in ecosystem functioning and its responses to climatically driven changes.This study was supported by the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) (CGL2011-23681 and CGL2015-67682-R to PC), Ministerio de Medio Ambiente, Rural, y Marino (PN2009/067 to PC) and Junta de Andalucía (Excelencia projects P09-RNM-5376 and P12-RNM-327 to PC and JMMS, respectively). M.J.C. was supported by the Spanish Government “Formación de Profesorado Universitario” PhD grant (FPU12/01243) and I.D.-G. by the Junta de Andalucía “Personal Investigador en Formación” PhD grant (FPI RNM-5376). This work is in partial fulfillment of the Ph. D. thesis of M.J.C
    corecore