1,276 research outputs found

    Constraining the Origin of Local Positrons with HAWC TeV Gamma-Ray Observations of Two Nearby Pulsar Wind Nebulae

    Full text link
    The HAWC Gamma-Ray Observatory has reported the discovery of TeV gamma-ray emission extending several degrees around the positions of Geminga and B0656+14 pulsars. Assuming these gamma rays are produced by inverse Compton scattering off low-energy photons in electron halos around the pulsars, we determine the diffusion of electrons and positrons in the local interstellar medium. We will present the morphological and spectral studies of these two VHE gamma-ray sources and the derived positron spectrum at Earth.Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea. See arXiv:1708.02572 for all HAWC contribution

    Switching the Conductance of a Molecular Junction using a Proton Transfer Reaction

    Full text link
    A novel mechanism for switching a molecular junction based on a proton transfer reaction triggered by an external electrostatic field is proposed. As a specific example to demonstrate the feasibility of the mechanism, the tautomers [2,5-(4-hydroxypyridine)] and {2,5-[4(1H)-pyridone]} are considered. Employing a combination of first-principles electronic structure calculations and Landauer transport theory, we show that both tautomers exhibit very different conductance properties and realize the "on" and "off" states of a molecular switch. Moreover, we provide a proof of principle that both forms can be reversibly converted into each other using an external electrostatic field.Comment: 14 pages, 5 figure

    Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions

    Get PDF
    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasi-degenerate states. Decoherence mechanisms arising from the electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the all-important relevance of vibrations for understanding charge transport through molecular junctions.Comment: 5 pages, 4 figure

    WTC2005-63497 PACKING STRUCTURE OF OTS ON SILICON SURFACES: A COMPUTATIONAL APPROACH

    Get PDF
    ABSTRACT Optimal packing structure of Octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) adsorbed on a SiO 2 surface with a Si (100) substrate was studied performing molecular dynamics (MD) computational simulations. Molecular substitution, substitution pattern and molecular orientation of the OTS molecules on the SiO 2 (100) are the main factors studied in order to determine the optimal packing structure taking into account energetic balance. We have used the optimal packing structure to study other properties usually used to characterize SAMs as molecular and system tilt angles, film thickness and gauche defects. These properties and monolayer stability were studied performing MD simulations in a temperature range from 100 K to 600 K and we found that results obtained agree with those from experimental measurements. We found that OTS films are stable up to 500 K. The optimal structure obtained could be used in further MD simulations studies in order to determine tribological properties of OTS-SiO 2 systems

    Relationship Between The Excited State Relaxation Paths Of Rhodopsin And Isorhodopsin

    Get PDF
    The pigment Isorhodopsin, an analogue of the visual pigment Rhodopsin, is investigated via quantum-mechanics/molecular-mechanics computations based on an ab initio multiconfigurational quantum chemical, treatment. The limited \u3c5 kcal mol(-1) error found for the spectral parameters allows for a nearly quantitative analysis of the excited-state structure and reactivity of its 9-cis-retinal chromophore. We demonstrate that, similar to Rhodopsin, Isorhodopsin features a shallow photoisomerization path. However, the structure of the reaction coordinate appears to be reversed. In fact, while the coordinate still corresponds to an asynchronous crankshaft motion, the dominant isomerization component involves a counterclockwise, rather than clockwise, twisting of the 9-cis bond. Similarly, the minor component involves a clockwise, rather than counterclockwise, twisting of the 11-trans bond. Ultimately, these results indicate that Rhodopsin and Isorhodopsin relax along a common excited-state potential energy valley starting from opposite ends. The fact that the central and lowest energy region of such valley runs along a segment of the intersection space between the ground and excited states of the protein explains why the pigments decay at distinctive conical intersection structures

    Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4- ( dimethylamino ) benzonitrile?

    Get PDF
    We present here the results of time-resolved absorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient [email protected]

    Origin Of The Absorption Maxima Of The Photoactive Yellow Protein Resolved Via Ab Initio Multiconfigurational Methods

    Get PDF
    We discuss the role of the protein in controlling the absorption spectra of photoactive yellow protein (PYP), the archetype xanthopsin photoreceptor, using quantum mechanics/molecular mechanics (QM/MM) methods based on ab initio multireference perturbation theory, combined with molecular dynamics (MD) simulations. It is shown that in order to get results in agreement with the experimental data, it is necessary to use a model that allows for a proper relaxation of the whole system and treats the states involved in the electronic spectrum in a balanced way, avoiding biased results due to the effect of nonrepresentative electrostatic interactions on the chromophore

    Servidor de datos y página web para el aprendizaje de SIG en la ingeniería forestal

    Get PDF
    Los Sistemas de Información geográfica (SIG) son una herramienta de trabajo habitual en el ámbito de la ingeniería forestal, tanto en la faceta de redacción de proyectos, como en la investigación sobre el medio ambiente y el territorio. Cada vez hay más información cartográfica disponible desde servidores de diferentes instituciones, por lo que consideramos que es muy útil contar con una herramienta de organización de la información. En el trabajo que se presenta, se pretende proporcionar a los estudiantes e investigadores en materia forestal un portal que contenga información actualizada y ordenada sobre los recursos existentes compatibles con los SIG. Por tanto constituiráuna herramienta de apoyo que facilitarála fase de documentación, búsqueda de datos compatibles y aprendizaje de las herramientas que sirven de base para el desarrollo de cualquier trabajo técnico o de investigación relacionado con el medio ambiente y el territorio que se apoye en los SIG
    corecore