190 research outputs found

    Projections of wind energy resources in the Caribbean for the 21st century

    Get PDF
    The Caribbean has suitable conditions for a significant wind energy development, which makes a good planning for the future renewable energy mix essential. The impact of climate change on Caribbean wind power has been analyzed by means of an ensemble of CORDEX regional climate models (RCMs) under the RCP8.5 warming scenario. The offshore wind energy resource was classified for the historical period and for the future considering wind energy factors, environmental risk factors and cost factors whose weights were estimated by a Delphi method. Future projections show a maximum annual wind increase, ∼0.4 ms−1 (8%), in most of the Caribbean, except in the Yucatán Basin. This increment occurs mainly during the wet season, ∼0.5 ms−1 (∼10%), associated with changes in the extension of the North Atlantic Subtropical High, which will strengthen the Caribbean low-level jet. Additionally, the moderate wind increase, ∼0.2 ms−1 (∼4%), projected during the dry season is restricted to the southeastern coast and it is associated with an increment in the land-ocean temperature difference (∼1 °C), which will intensify local easterly winds. The low-level jet region was classified as the richest wind energy resource in the Caribbean for the future with a larger extension compared to the historical period.publishe

    Differences in coastal and oceanic SST trends north of Yucatan Peninsula

    Get PDF
    The coastal area north of Yucatan has experienced a cooling SST trend from 1982 to 2015 during the upwelling season (May–September) that contrasts with the warming observed at the adjacent ocean area. Different drivers were analyzed to identify the possible causes of that unusual coastal cooling. Changes in coastal upwelling and in sea-atmosphere heat fluxes are not consistent with the observed coastal cooling. The eastward shift of the Yucatan Current observed over the last decades is hypothesized as the most probable cause of coastal cooling. This shift enhances the vertical transport of cold deeper water to the continental shelf from where it is pumped to the surface by upwelling favorable westerly winds.publishe

    Downscaling CMIP6 climate projections to classify the future offshore wind energy resource in the Spanish territorial waters

    Get PDF
    The Spanish government has established a Maritime Spatial Planning including areas for wind farms, with the aim of contributing up to 40% of European floating offshore wind power by 2030. Thus, it is crucial to assess the current and future offshore wind energy resource in these areas, and classify the near future resource by considering wind power density and other relevant factors like resource stability, environmental risks, and installation costs. To attain the necessary high spatial resolution, a dynamic downscaling of a multi-model ensemble from the 6th phase of the Coupled Model Intercomparison Project was conducted using the Weather Research and Forecasting model in Spanish territorial waters, including the Iberian Peninsula, Balearic Islands, and Canary Islands. Future projections were considered under the Shared Socioeconomic Pathways 2–4.5 and 5–8.5 scenarios. According to the results, Spain’s offshore wind energy potential is projected to grow in the upcoming years, particularly in the Atlantic Ocean and surrounding the Canary Islands. Wind resource classification in the potential offshore wind farm areas reveals noteworthy diversity, with ratings ranging from “fair” (3/7) to “outstanding” (6/7). The most promising areas for offshore wind farm development in the near future are located in the northwest of the Iberian Peninsula and the Canary Islands.Xunta de Galicia | Ref. ED431C 2021/44Agencia Estatal de Investigación | Ref. TED2021-129479A-I00Agencia Estatal de Investigación | Ref. PID2021-128510OB-I00Agencia Estatal de Investigación | Ref. IJC2020-043745-

    AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors

    Get PDF
    5'-AMP-activated protein kinase (AMPK) is an energy sensor that controls cell metabolism, and it has been related to apoptosis and cell-cycle arrest. Although its role in metabolic homeostasis is well documented, its function in cancer is much less clear. In this study, we examined the role of AMPK in a mouse model of astrocytoma driven by oncogenic H-Ras(V12) and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We also evaluated the activity and role of AMPK in human glioblastoma cells and xenografts. AMPK was constitutively activated in astrocytes expressing oncogenic H-Ras(V12) in parallel with high cell division rates. Genetic deletion of AMPK or attenuation of its activity in these cells was sufficient to reduce cell proliferation. The levels of pAMK were always related to the levels of phosphorylated retinoblastoma (Rb) at Ser804, which may indicate an AMPK-mediated phosphorylation of Rb. We confirmed this AMPK-Rb relationship in human glioblastoma cell lines and xenografts. In clinical specimens of human glioblastoma, elevated levels of activated AMPK appeared especially in areas of high proliferation surrounding the blood vessels. Together, our findings indicate that the initiation and progression of astrocytic tumors relies upon AMPK-dependent control of the cell cycle, thereby identifying AMPK as a candidate therapeutic target in this setting

    Non-invasive Spatial Mapping of Frequencies in Atrial Fibrillation: Correlation With Contact Mapping

    Get PDF
    Introduction: Regional differences in activation rates may contribute to the electrical substrates that maintain atrial fibrillation (AF), and estimating them non-invasively may help guide ablation or select anti-arrhythmic medications. We tested whether non-invasive assessment of regional AF rate accurately represents intracardiac recordings. Methods: In 47 patients with AF (27 persistent, age 63 ± 13 years) we performed 57-lead non-invasive Electrocardiographic Imaging (ECGI) in AF, simultaneously with 64-pole intracardiac signals of both atria. ECGI was reconstructed by Tikhonov regularization. We constructed personalized 3D AF rate distribution maps by Dominant Frequency (DF) analysis from intracardiac and non-invasive recordings. Results: Raw intracardiac and non-invasive DF differed substantially, by 0.54 Hz [0.13 - 1.37] across bi-atrial regions (R2 = 0.11). Filtering by high spectral organization reduced this difference to 0.10 Hz (cycle length difference of 1 - 11 ms) [0.03 - 0.42] for patient-level comparisons (R2 = 0.62), and 0.19 Hz [0.03 - 0.59] and 0.20 Hz [0.04 - 0.61] for median and highest DF, respectively. Non-invasive and highest DF predicted acute ablation success (p = 0.04). Conclusion: Non-invasive estimation of atrial activation rates is feasible and, when filtered by high spectral organization, provide a moderate estimate of intracardiac recording rates in AF. Non-invasive technology could be an effective tool to identify patients who may respond to AF ablation for personalized therapy

    Characterization of Spermatogonial Stem Cells Lacking Intercellular Bridges and Genetic Replacement of a Mutation in Spermatogonial Stem Cells

    Get PDF
    Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14+/− spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term

    Far-Infrared Therapy Induces the Nuclear Translocation of PLZF Which Inhibits VEGF-Induced Proliferation in Human Umbilical Vein Endothelial Cells

    Get PDF
    Many studies suggest that far-infrared (FIR) therapy can reduce the frequency of some vascular-related diseases. The non-thermal effect of FIR was recently found to play a role in the long-term protective effect on vascular function, but its molecular mechanism is still unknown. In the present study, we evaluated the biological effect of FIR on vascular endothelial growth factor (VEGF)-induced proliferation in human umbilical vein endothelial cells (HUVECs). We found that FIR ranging 3∼10 µm significantly inhibited VEGF-induced proliferation in HUVECs. According to intensity and time course analyses, the inhibitory effect of FIR peaked at an effective intensity of 0.13 mW/cm2 at 30 min. On the other hand, a thermal effect did not inhibit VEGF-induced proliferation in HUVECs. FIR exposure also inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinases in HUVECs. FIR exposure further induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO generation in VEGF-treated HUVECs. Both VEGF-induced NO and reactive oxygen species generation was involved in the inhibitory effect of FIR. Nitrotyrosine formation significantly increased in HUVECs treated with VEGF and FIR together. Inhibition of phosphoinositide 3-kinase (PI3K) by wortmannin abolished the FIR-induced phosphorylation of eNOS and Akt in HUVECs. FIR exposure upregulated the expression of PI3K p85 at the transcriptional level. We further found that FIR exposure induced the nuclear translocation of promyelocytic leukemia zinc finger protein (PLZF) in HUVECs. This induction was independent of a thermal effect. The small interfering RNA transfection of PLZF blocked FIR-increased PI3K levels and the inhibitory effect of FIR. These data suggest that FIR induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in HUVECs

    Módulo experimental para el diseño de sistemas solares pasivos

    Get PDF
    El presente trabajo consiste en desarrollar y ejecutar un proyecto que tenga la incorporación de criterios constructivos Bioambientales cuyo objetivo general es evaluar el ahorro energético en función de la envolvente y la aplicación de una metodología de cálculo para un diseño solar pasivo, para lo cual se desarrolló una programación de mediciones sistemáticas de las temperaturas superficiales, temperaturas del aire, flujos de calor y energías consumidas para mantener el grado de confort en el interior del módulo. En el análisis de este trabajo se buscó relacionando el valor “G" del balance térmico de la envolvente con la energía consumida y las temperaturas exteriores colocando los valores obtenidos en una función lineal que nos permita cuantificar el ahorro energético. Y de esta forma se puede confeccionar o estipular la relación costo - beneficio.Facultad de Arquitectura y Urbanism

    The Mitochondrial Genome Is a “Genetic Sanctuary” during the Oncogenic Process

    Get PDF
    Since Otto Warburg linked mitochondrial physiology and oncogenesis in the 1930s, a number of studies have focused on the analysis of the genetic basis for the presence of aerobic glycolysis in cancer cells. However, little or no evidence exists today to indicate that mtDNA mutations are directly responsible for the initiation of tumor onset. Based on a model of gliomagenesis in the mouse, we aimed to explore whether or not mtDNA mutations are associated with the initiation of tumor formation, maintenance and aggressiveness. We reproduced the different molecular events that lead from tumor initiation to progression in the mouse glioma. In human gliomas, most of the genetic alterations that have been previously identified result in the aberrant activation of different signaling pathways and deregulation of the cell cycle. Our data indicates that mitochondrial dysfunction is associated with reactive oxygen species (ROS) generation, leading to increased nuclear DNA (nDNA) mutagenesis, but maintaining the integrity of the mitochondrial genome. In addition, mutational stability has been observed in entire mtDNA of human gliomas; this is in full agreement with the results obtained in the cancer mouse model. We use this model as a paradigm of oncogenic transformation due to the fact that mutations commonly found in gliomas appear to be the most common molecular alterations leading to tumor development in most types of human cancer. Our results indicate that the mtDNA genome is kept by the cell as a “genetic sanctuary” during tumor development in the mouse and humans. This is compatible with the hypothesis that the mtDNA molecule plays an essential role in the control of the cellular adaptive survival response to tumor-induced oxidative stress. The integrity of mtDNA seems to be a necessary element for responding to the increased ROS production associated with the oncogenic process

    Epigenetic Mechanisms Regulate Stem Cell Expressed Genes Pou5f1 and Gfra1 in a Male Germ Cell Line

    Get PDF
    Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes
    corecore