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A B S T R A C T   

The Spanish government has established a Maritime Spatial Planning including areas for wind farms, with the 
aim of contributing up to 40% of European floating offshore wind power by 2030. Thus, it is crucial to assess the 
current and future offshore wind energy resource in these areas, and classify the near future resource by 
considering wind power density and other relevant factors like resource stability, environmental risks, and 
installation costs. To attain the necessary high spatial resolution, a dynamic downscaling of a multi-model 
ensemble from the 6th phase of the Coupled Model Intercomparison Project was conducted using the Weather 
Research and Forecasting model in Spanish territorial waters, including the Iberian Peninsula, Balearic Islands, 
and Canary Islands. Future projections were considered under the Shared Socioeconomic Pathways 2–4.5 and 
5–8.5 scenarios. According to the results, Spain’s offshore wind energy potential is projected to grow in the 
upcoming years, particularly in the Atlantic Ocean and surrounding the Canary Islands. Wind resource classi-
fication in the potential offshore wind farm areas reveals noteworthy diversity, with ratings ranging from “fair” 
(3/7) to “outstanding” (6/7). The most promising areas for offshore wind farm development in the near future 
are located in the northwest of the Iberian Peninsula and the Canary Islands.   

1. Introduction 

The use of fossil fuels as a primary source of energy has an undeni-
able and significant impact on the Earth’s climate change, through the 
emission of greenhouse gases (GHGs) (IPCC, 2021). In 2021, during the 
COP26 conference in Glasgow, the United Nations emphasized the ur-
gent need to reduce the net CO2 emissions to zero by 2050 to prevent the 
average temperature of the planet from rising beyond +2 ◦C (United 
Nations, 2021). Therefore, it has become essential to generate “clean 
energy” that does not emit GHGs in order to mitigate the adverse effects 
of human activities on the climate. Renewable energy sources offer a 
potent solution to accomplish this goal and are currently undergoing a 
remarkable expansion. Globally, their cumulative capacity surged from 
175 GW in 2017 to 335 GW in 2022, thus representing a 90% increase in 
a few years (IEA, 2023). 

Among renewable energy sources, wind energy has already estab-
lished itself as a leading contender in Europe, owing to the deployment 
of wind turbines on the mainland, a technology that has been proven to 

be efficient and mature (WindEurope, 2023a). However, offshore wind 
energy, which involves installing wind turbines in the sea, is expected to 
play a crucial role in the coming years and decades (GWEC, 2023; 
WindEurope, 2023b). This is because the oceans constitute 70% of the 
Earth’s surface and offer higher and more consistent wind speeds than 
those on the mainland (BOEM, n.d.). Additionally, modern offshore 
wind turbines can float by being installed on anchored buoys rather than 
being built directly on the ocean floor. Therefore, they can be installed at 
greater water depths, making it possible for offshore wind farms to be 
more uniformly distributed across Europe in the future. Presently, the 
North Sea boasts the highest density of offshore wind farms globally 
(GWEC, 2020), while other regions like the Iberian Peninsula have not 
yet harnessed this renewable energy due to their narrow continental 
shelf. 

It’s worth noting that while offshore wind energy can help reduce the 
impact of climate change, it can also be affected by it. Indeed, wind 
power is dependent on the cubed wind speed (Costoya et al., 2020a; 
Santos et al., 2018). Thus, even slight variations in wind speed, caused 
by climate change, can have a significant impact on wind power. For 

* Corresponding author. 
E-mail address: brieuc.thomas@uvigo.es (B. Thomas).  

Contents lists available at ScienceDirect 

Journal of Cleaner Production 

journal homepage: www.elsevier.com/locate/jclepro 

https://doi.org/10.1016/j.jclepro.2023.139860 
Received 7 July 2023; Received in revised form 15 November 2023; Accepted 19 November 2023   

mailto:brieuc.thomas@uvigo.es
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2023.139860
https://doi.org/10.1016/j.jclepro.2023.139860
https://doi.org/10.1016/j.jclepro.2023.139860
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Journal of Cleaner Production 433 (2023) 139860

2

example, a decrease of the wind speed from 10 m s−1 to 9 m s−1 (-10%) 
would result in a 27% decrease in wind power. As the installation of 
offshore wind farms is expected to increase rapidly in the coming years, 
it’s crucial to understand how climate change could alter wind speed 
patterns. Climate models have proved to be the most suitable and robust 
tool to achieve this (Fernández-Alvarez et al., 2023; González et al., 
2017; Zhang and Li, 2021). The 6th phase of the Coupled Model Inter-
comparison Project (CMIP6) (Eyring et al., 2016) provides the most 
recent and extensive collection of General Circulation Models (GCMs), 
which offer climate projections of the atmosphere based on different 
scenarios of future GHG emissions, referred to as Shared Socioeconomic 
Pathways (SSPs) (Riahi et al., 2017). These scenarios consider various 
policies that take into account different hypotheses about the evolution 
of population, education, urbanization, and Gross Domestic Product 
(GDP) to assess future GHG emissions. However, these GCMs offer a 
relatively coarse resolution since they model the entire atmosphere of 
the Earth, making it difficult to study the impact of climate change in 
specific regions. Therefore, it’s necessary to increase the spatial reso-
lution of these models to carry out more detailed analyses at the regional 
scale. This can be accomplished through dynamical downscaling using 
Regional Climate Models (RCMs), which are forced with GCMs data and 
enable the modeling of the atmosphere with a much better resolution, 
taking into account the specific characteristics of the area under study. 
Nevertheless, analyzing the reliability of climate models in accurately 
replicating wind patterns within a particular region is of paramount 
importance. This entails a comparison between historical model simu-
lations and observational data specific to the area. Models that 
demonstrate a statistically significant alignment with observed data are 
regarded as robust in replicating the region’s reality, thus rendering 
their future simulations suitable for assessing forthcoming wind 
patterns. 

The investigation into the impact of climate change on offshore wind 
energy is particularly relevant in Spanish territorial waters, which in-
cludes the Iberian Peninsula, Balearic Islands, and Canary Islands, due to 
the expected rapid growth of offshore wind energy production in the 
country. The Spanish government has set a target of achieving an 
installed offshore wind capacity between 1 and 3 GW by 2030, which 
could contribute up to 40% of the European targets for floating offshore 
wind (Spanish Ministry for Ecological Transition and the Demographical 

Challenge, 2022). To achieve this goal, the Spanish government has 
recently published a Maritime Spatial Planning (MSP) including 19 
areas where offshore wind farms could be installed (blue polygons in 
Fig. 1), divided into four zones (NOR, LEBA, ESAL, and CAN) (Spanish 
Ministry for Ecological Transition and the Demographical Challenge, 
2023). This indicates that the legal framework for offshore wind energy 
in Spain is now well-defined. It should be noted that the definition of a 
MSP is a key tool in order to permit the development of offshore wind 
energy harnessing, thus all of the coastal European countries defined 
one of their own (WindEurope, 2022). In addition, the high offshore 
wind energy resource potential in the Spanish territorial waters, 
particularly on the Atlantic coast (Costoya et al., 2020a, 2022; Salvação 
and Guedes Soares, 2018), and technical advances in floating wind 
turbines, which have allowed for the installation of the first offshore 
floating wind farm in Portugal (https://www.edp.com/en/innovation/ 
windfloat), are other positive factors. It is worth emphasizing that 
designing a Maritime Spatial Planning (MSP) for floating offshore wind 
facilities involves the consideration of numerous factors. These include 
the assessment of wind resources, wave conditions, proximity to the 
shoreline, and the need to avoid navigational routes and protected areas 
(Díaz et al., 2019). 

Previous studies have assessed the impact of climate change on wind 
speed patterns within the Spanish territorial waters. Fernández-Alvarez 
et al. (2023) studied offshore wind climate projections in the western 

Nomenclature 

CMIP6 6th phase of the Coupled Model Intercomparison 
Project 

CORDEX Coordinated Regional Climate Downscaling 
Experiment 

Cv Temporal Stability 
DC Distance to Coast 
EWS Extreme Wind Speed 
EWSO Effective Wind Speed Occurrence 
GCM General Circulation Model 
GHGs Greenhouse Gases 
MSP Maritime Spatial Planning 
Mv Monthly Stability 
OP Overlapping Percentage 
RCM Regional Climate Model 
RLO Rich Level Occurrence 
SSP Shared Socioeconomic Pathway 
W10 and W100 Wind Speed at 10 and 100 m above sea level 
Wann Average Annual Wind Speed 
WD Water Depth 
WPD Wind Power Density 
WRF Weather Research and Forecasting  

Fig. 1. Area under scope of this study: (a) Continental Spain and Balearic 
Islands, (b) Canary Islands. Red shapes mark the zones containing polygons 
(painted in blue color) where it is possible to install offshore wind farms. 
Numbered crosses indicate the location of buoys from Puertos del Estado. 
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Iberian Peninsula using the WRF (Weather Research and Forecasting) 
model to downscale CESM2 GCM data from CMIP6. They found that 
Wind Power Density (WPD) is predicted to increase during the 21st 
century, particularly during summer. Conversely, Costoya et al. (2020a) 
observed a decrease in WPD on the Atlantic coast of the Iberian Penin-
sula, except for the North West corner, with an increase projected during 
summer in the 21st century. They bias-corrected the downscaled Coor-
dinated Regional Climate Downscaling Experiment (CORDEX) data ob-
tained with CMIP5 coarse data. Soares et al. (2017) detected a general 
reduction in wind resources within the western Iberian Peninsula, 
except for summer, using both CORDEX data and a WRF dynamical 
downscaling of EC-EARTH GCM from CMIP5. Lastly, using CORDEX 
data, Santos et al. (2018) identified that, except for Galicia, the Strait of 
Gibraltar, and Cape Gata, where offshore resources are predicted to 
increase, a general decrease in wind resources is anticipated throughout 
the Iberian Peninsula. In the Canary Islands, González et al. (2017) 
conducted a study to analyze the development of wind speed patterns 
using a WRF dynamical downscaling of CMIP5 data. They found that the 
WPD is expected to increase in some areas and decrease in others due to 
the significant influence of the islands’ topographies. In addition, pre-
vious studies have examined other aspects related to offshore wind en-
ergy. For instance, economic feasibility (Castro-Santos and Diaz-Casas, 
2015; Castro-Santos et al., 2016) of installing offshore wind farms, 
particularly in the northwest of the Iberian Peninsula, has been 
explored. Additionally, legislation surrounding these installations has 
also been analyzed for this area (Rodríguez-Rodríguez et al., 2016; 
Salvador et al., 2018). 

Climate change’s impact on offshore wind energy resources has been 
studied in other regions using CMIP6 data. Martinez et al. (2023) 
investigated the future WPD projections in Northern Europe by using 
raw data from multiple CMIP6 GCMs with coarse resolution and pre-
dicted a general decrease in WPD. Zhang and Li (2021) conducted a 
study on future offshore wind projections in China using a deep learning 
downscaling of CMIP6 data. They discovered that an increase in WPD is 
expected over the South China Sea and a decrease over the East China 
Sea. Lastly, Carvalho et al. (2021) outlined several differences in wind 
energy resource between CMIP5 and CMIP6 future climate projections 
in Europe. As an example, CMIP6 projects a decline for almost all Europe 
by the end of the century, especially under SSP5-8.5, whereas CMIP5 
predicted an increase in Northern Europe. 

This study aims to achieve two main objectives. First, to evaluate the 
impact of climate change on the future wind energy resource in areas 
designated by the Spanish Government’s MSP to host wind turbine 
farms. Secondly, to classify the offshore wind energy resource in these 
zones, considering various crucial factors for installing offshore wind 
turbines. This approach will identify areas with the most favorable 

conditions for installing offshore wind farms within the current legal 
framework. The study will employ data from a dynamical downscaling 
of a CMIP6 multimodel under two future scenarios, SSP2-4.5 (interme-
diate GHGs emissions) and SSP5-8.5 (high GHGs emissions), repre-
senting the latest future projections. The dynamical downscaling will be 
carried out using the WRF-ARW v4.3.3 model (referred as WRF). To the 
best of our knowledge, this study is the first to analyze and classify 
future offshore wind energy in the areas of the Spanish territorial waters 
designated for offshore wind farms under the current legal framework. 

2. Data and Methods 

This section details the procedures employed to acquire the wind 
data necessary for this analysis, along with the methodologies used to 
validate the results and classify offshore wind energy. Initially, it de-
scribes the parametrization used in the WRF model to dynamically 
downscale the CMIP6 data. Subsequently, it explains the process of 
comparing results with reanalysis and observational data for validation 
purposes. Finally, it elucidates the methodology used to classify the 
offshore wind data, facilitating the identification of optimal locations for 
harnessing wind energy. 

2.1. WRF model setup 

The wind speed, a crucial variable for wind energy calculations, was 
obtained by means of a dynamical downscaling approach using the 
WRF-ARW v4.3.3 meteorological model (Skamarock et al., 2021). The 
initial and boundary conditions were provided by Xu et al. (2021) with a 
spatial resolution of 1.25◦ and a temporal resolution of 6 h. This data set 
covers a historical period from 1985 to 2014 and a future period from 
2015 to 2100 under SSP2-4.5 and SSP5-8.5 scenarios. The database 
considers a multi-model ensemble of 18 GCMs from CMIP6 project for 
long-term trend, and the internal climate variability of a single CMIP6 
model (MPI-ESM1-HR). In addition, the dataset was biased corrected 
using data from the ERA5 reanalysis (Hersbach et al., 2020) for the 
period 1979–2014. To summarize the process for obtaining these data, 
Xu et al. (2021) used data from one of the CMIP6 GCMs (MPI-ESM1-HR) 
and decomposed it into a non-linear long-term and an inter-annual 
perturbation term. Then, they corrected the MPI-ESM1-HR variance 
bias by correcting the inter-annual perturbation term using the variance 
of the ERA5 data over the historical period (1979–2014). Next, they 
corrected the non-linear long-term by using the non-linear long-term of 
the multi-model ensemble instead of the one of a single GCM. Lastly, 
they bias-corrected the GCM by removing to the data the subtraction 
between the mean bias of the long-term trend of the GCM data and the 
one of the ERA5 reanalysis dataset, over the historical period. 

WRF was configured with three different simulation domains. The 
parent domain, referred to as D01 in Fig. 2, had a spatial resolution of 30 
km, while for the two nested domains, D02 and D03, a spatial resolution 
of 10 km was used. D02 covered continental Spain and the Balearic 
Islands, while D03 covered the Canary Islands. The use of this configu-
ration allowed the generation of future wind speed data with the 
necessary spatial resolution to conduct a detailed analysis of the areas 
designated for offshore wind farm installation in the whole Spanish 
coast. 

Three 30-year climate periods were simulated: historical 
(1985–2014), near future (2030–2059) and far future (2070–2099), 
under two scenarios: SSP2-4.5 and SSP5-8.5. To prevent errors from 
accumulating in the WRF model, the simulations were run on a daily 
basis with a spin-up period of 12 h. This means that each simulation 
lasted 36 h, starting at 12:00 UTC on the previous day of interest. This 
method, which has been used in previous studies using the WRF model 
for downscaling (Horvath et al., 2012; Jerez et al., 2020; Lo et al., 2008; 
Pan et al., 1999; Qian et al., 2003), ensures greater accuracy at the cost 
of higher computational resources compared to continuous simulations 
of the entire period. In addition, the following parameterizations were 

Fig. 2. Bathymetry (m) of the region of study and simulation domains (white 
lines) used in WRF. 
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used: Thompson microphysics scheme (Thompson et al., 2008), Yonsei 
University planetary boundary layer scheme (Hong et al., 2006), United 
Noah land surface model (Tewari et al., 2004), Revised MM5 surface 
layer scheme (Jiménez et al., 2012), RRTMG shortwave and longwave 
radiations scheme (Iacono et al., 2008) and New Tiedtke cumulus 
parametrization (Zhang and Wang, 2017). 

The simulation output provided wind speed data at two different 
heights above sea level, namely, 10 m and 100 m (denoted as W10 and 
W100, respectively) with a temporal resolution of 6 h and a spatial 
resolution of 10 km (within the areas of interest, as shown in Fig. 1). 
While W100 was the primary variable of interest due to its relevance for 
wind turbines’ hub height, W10 was also considered for validation with 
observed data. 

2.2. Validation of WRF outputs 

To evaluate the accuracy of simulated wind speed, two separate 
validations were conducted using different datasets. Firstly, the W100 
outputs from WRF simulations were compared with ERA5 wind speed 
values (Hersbach et al., 2020) at 100 m, encompassing the entire region 
of continental Spain, Balearic Islands, and Canary Islands. The ERA5 
data between 1985 and 2014, with a spatial resolution of 0.25◦ and 1-h 
temporal resolution, was used for this purpose, which was obtained 

from: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis- 
era5-single-levels?tab=form. To compare the W100 data from WRF 
and ERA5 for the historical period, the overlapping percentage (OP, 
Perkins et al., 2007) between all grid points from both datasets was 
calculated in the areas under scope, as shown in Fig. 1. Since the WRF 
and ERA5 datasets have different spatial resolutions, a linear interpo-
lation of the WRF grid (higher resolution, 10 km) on the ERA5 grid 
(lower resolution, 0.25◦) was performed, solely for this validation pro-
cess. Additionally, the two datasets do not have the same temporal 
resolution, and hence daily mean values were calculated for both 
datasets. Then, the probability density function of each series of W100 
was computed for each grid point, using 25 bins (from 0 to 25 m s−1 with 
a 1 m s−1 increment) for both datasets. Fig. 3 illustrates an example of 
this process visually. 

Finally, the OP of each grid point is calculated with the following 
formula: 

OP(%)= 100∗
∑n

i=1
minimum

(
ZWRF

i , ZValid
i

)
(1)  

Here, n represents the number of bins (25) and Zi is the frequency of 
occurrence of the wind speed range between (i-1) and (i) m.s−1, of WRF 
or “Valid” (here ERA5) dataset. 

The second validation involved using observed data from 14 buoys 
located in the same area under scope. These buoys measured wind speed 
at 3 m above sea level with an hourly temporal resolution (except for 
buoys B1 and B13, which have a 3-h temporal resolution until 2002 and 
2004, respectively) and were selected from Puertos del Estado (https 
://www.puertos.es/es-es) as shown in Table 1. The period that was 
processed for comparison with WRF simulated data ranged from the 
starting year of recording of each buoy (see Table 1) to 2014. For each 
buoy, the number of available measurements within this period is also 
shown in Table 1. The locations of these buoys were represented by 
numbered crosses in Fig. 1. 

Formula 2 had to be applied to extrapolate the wind speed from the 
buoys, which was measured at a height of 3 m above sea level, to a 
height of 10 m above sea level for the validation process (Santos et al., 
2018). 

WH2 = WH1 ∗

ln
(

H2

z0

)

ln
(

H1

z0

) (2)  

Where, H1 is the height at which data is available, H2 is the height at 
which data is extrapolated, WHi is the wind speed at the height Hi, and z0 
is the roughness length of the terrain. In this case, H1 = 3 m and H2 = 10 
m, therefore WH1 is the raw data obtained from buoys, while WH2 is the 
extrapolated wind speed at 10 m above sea level that will be used for the 
comparison with WRF data. The roughness length of the ocean’s surface 

Fig. 3. Tools used during the validation process for each wind speed series. 
White bars represent the frequency of occurrence of wind speed for each bin 
used to calculate the OP, black line is the closest Weibull distribution, and red 
mark is the location of its maximum on the X axis. Data from the WRF historical 
simulation in D02, at location [7.6936◦W; 44.1008◦N]. 

Table 1 
Buoys from Puertos del Estado (https://www.puertos.es/es-es) used in this study, spanning from the starting year to 2014.  

Number Name Longitude (◦) Latitude (◦) Starting year N◦ Measurements 

B1 Bilbao-Vizcaya −3.04 43.64 1990 120,185 
B2 Cabo de Peñas −6.18 43.75 1998 126,849 
B3 Estaca de Bares −7.68 44.12 1996 121,314 
B4 Villano-Sisargas −9.21 43.5 1998 121,013 
B5 Cabo Silleiro −9.43 42.12 1998 128,518 
B6 Golfo de Cadiz −6.96 36.49 1996 149,972 
B7 Cabo de Gata −2.34 36.57 1998 120,094 
B8 Cabo de Palos −0.31 37.65 2006 71,534 
B9 Valencia 0.20 39.51 2005 74,366 
B10 Tarragona 1.47 40.69 2004 86,484 
B11 Cabo de Begur 3.65 41.9 2001 94,060 
B12 Dragoneras 2.10 39.56 2006 67,364 
B13 Mahón 4.42 39.71 1993 100,021 
B14 Gran Canaria −15.8 28.2 1997 135,091  
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was set at z0 = 1.52 10−4 m as in previous studies (Peixoto and Oort, 
1992). Since the temporal resolutions of the WRF and buoy data are 
different, daily averaged values of wind speed are calculated for both 
data sets. The closest point of the WRF grid to each buoy is then 
determined and used to compare the two series of W10. To validate the 
results, three different metrics were used. The first metric was the OP, 
which was calculated using the methodology described previously 
(Formula 1, with “Valid” = “Buoy”). The second metric involved 
calculating the percentage of difference between the medians of the two 
series using the following formula (Costoya et al., 2020a): 

ΔMed (%)= 100∗
MedWRF − MedBuoy

MedBuoy
(3) 

Finally, the percentage of difference in the peak location of the 
Weibull distribution between the two series was considered (Formula 4, 
Costoya et al., 2020a). This involved computing the closest Weibull 
distribution for both series and comparing the locations of the peaks on 
the X-axis (as shown in Fig. 3). 

ΔPeak (%)= 100∗
PeakWRF − PeakBuoy

PeakBuoy
(4) 

Consequently, two types of validation were conducted. The first type 
involved considering the entire scope of the area under examination 
using ERA5 data. The second type involved the use of observational data 
to validate WRF simulations for specific locations. Both validation ap-
proaches were used complementarily. 

2.3. Wind power density calculation 

The output data from WRF model is wind speed, but wind energy 
values are needed in order to evaluate the potential for harnessing this 
resource. To this end, Formula 5 (Santos et al., 2018) is used to calculate 
wind power density: 

WPD =
1
2
ρaW3 (5)  

Where ρa is the air density (1.225 kg m−3 at 288.15 K and 1000 hPa), W 
(m.s−1) is the wind speed and WPD (W.m−2) is the wind power density. 

To depict the changes in wind power density (ΔWPD) between his-
torical and future periods, the percentage difference between the 
average values of the two periods is computed using the following for-
mula: 

ΔWPD(%)= 100∗
WPDfut − WPDhist

WPDhist
(6)  

2.4. Wind resource classification 

When analyzing the suitability of coastal locations for installing 
offshore wind farms, wind power density (WPD) is not the only 
parameter to be taken into consideration. Other parameters related to 
the resource’s richness, stability, risk to oceanic structures, and eco-
nomic costs should also be included. As a result, the offshore wind en-
ergy resource in all polygons within the Spanish MSP was classified, 
providing a more comprehensive understanding of the suitability of 
areas for offshore wind farm installation. The classification process 
considered eight different indices, accounting for the richness and sta-
bility of the resource, risk to oceanic structures, and economic costs. A 
similar methodology has previously been applied in other areas for both 
offshore wind energy resource (Costoya et al., 2019, 2020b, 2021, 2022; 
Zheng and Pan, 2014; Zheng et al., 2018) and wave energy (Ribeiro 
et al., 2021). In this, study, the methodology proposed by Costoya et al. 
(2022) will be followed. 

To assess the richness of the resource, three different indices were 
established. The first index is the Wann (m.s−1), which considers the 
average annual wind speed value. The second index, Effective Wind 
Speed Occurrence (EWSO, %), represents the percentage of time during 
which wind speeds are between 4 m s−1 and 25 m s−1, the cut-in and cut- 
out wind speeds, respectively, at which a wind turbine can generate 
energy. The final index is the Rich Level Occurrence (RLO, %), which 
indicates the percentage of time during which the WPD is higher than 
200 W m−2. To evaluate the stability of the resource, two other indices 
were utilized. The first is Cv, which is a measure of temporal stability 
that is defined using the standard deviation (σ) and the mean value (W) 
of the wind speed data over all the considered period of simulation, as 
shown in Formula 7. The second index is Mv, which is an index of 
monthly stability that is defined using the mean WPD of the least and 
most energetic months in the climatic year (WPDM12 and WPDM1, 
respectively), as well as the mean annual WPD (WPD), as demonstrated 
in Formula 8. 

Cv =
σ
W

(7)  

Mv =
WPDM1 − WPDM12

WPD
(8) 

To assess the risk to oceanic structures, the Extreme Wind Speed 
(EWS in m.s−1) index is also utilized, which is associated with the 
highest wind speed value that can be found over all the considered 
period of simulation. Indeed, extreme winds might harm wind turbine 
structures. This index is calculated using a Gumbel curve method with a 
50-year return period (Zheng et al., 2018). 

Finally, the economic cost is evaluated using two indices: the dis-
tance to the coast (DC in degrees) and the water depth (WD in meters). 
Building an offshore wind turbine closer to the coast and in shallower 
waters is less expensive. 

This entire methodology used a Delphi approach. Thus, several ex-
perts, scientists and engineers working in this field have been asked 
what aspects would most affect the use of offshore wind energy, and 
then they have given a weight to each of these indices. Detailed infor-
mation of this part of the methodology can be seen in Zheng et al. 
(2018). Nevertheless, these eight indices used in the analysis have 
different units and magnitudes, and therefore must be normalized to 
allow for comparison between them. To achieve this, several normali-
zation methods were applied, following the values of Tables A1 to A3 
(Appendix section). These normalization methods produced normalized 
indices with values between 0 (worst) and 1 (best), and without units. 

To obtain a single index for each location, the normalized indices 
were combined with different weights provided by the experts consulted 
before, as described in Table 2. The resulting final index represents the 
sum of each normalized index multiplied by its respective weight. The 
values of the final index were then used to classify the areas based on 

Table 2 
Weight given to each one of the eight normalized indices.   

Wann EWSO RLO Cv Mv EWS DC WD 

Weight 0.22 0.22 0.10 0.10 0.05 0.14 0.07 0.10  

Table 3 
Classification given to the resource according to the final index.  

Class Index value Resource potential 

1 ⩽ 0.4 Poor 
2 (0.4, 0.5] Marginal 
3 (0.5, 0.6] Fair 
4 (0.6, 0.7] Good 
5 (0.7, 0.8] Excellent 
6 (0.8, 0.9] Outstanding 
7 >0.9 Superb  
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their suitability for offshore wind farms, as presented in Table 3. The 
values for Tables 2 and 3 correspond to the ones found in various studies 
(Costoya et al., 2019, 2020b, 2021, 2022; Zheng and Pan, 2014; Zheng 
et al., 2018). 

Fig. 4 summarizes all the data and Method section of this analysis. 

3. Results and discussion 

In this section, the study presents various results obtained. Initially, 
it relates the validation of dynamically downscaled data, comparing it to 
reanalysis (ERA5) and observational (buoys) data. Subsequently, it 
provides a detailed account of the distribution of WPD in Spanish ter-
ritorial waters in the historical period, along with its evolution in the 
near future. Finally, it frames the classification of the offshore wind 
resource within the 19 polygons defined by the Spanish MSP, for both 
the historical and near future periods. 

3.1. Validation of the WRF simulations 

To verify the accuracy of the data used in this research, two com-
parisons were conducted between the WRF model output and observa-
tional data for the historical period (1985–2014). Initially, the W100 
output from WRF was compared with the W100 data from the ERA5 
reanalysis dataset by computing the Overlapping Percentage (OP, For-
mula 1) between the two variables. The findings are presented in Fig. 5. 
In general, values of OP are greater than 90% in open sea and slightly 
lower closer to the coast. However, at the south of Tenerife Island in the 
Canary Islands domain (Fig. 5b), the OP values are lower than 60%, 
possibly due to the interactions between northeast trade winds and the 
Teide mountain at the center of the island. Indeed, the lower resolution 
of the ERA5 data set (in comparison with the WRF simulations carried 

Fig. 4. Flowchart of the processes described in Data and Methods section.  

Fig. 5. OP (%) between W100 from WRF simulation and ERA5 dataset, for the 
1985–2014 period in the: (a) Continental Spain and Balearic Islands, (b) Ca-
nary Islands. 

Table 4 
Metrics of comparison between W10 from WRF simulation and Puertos de 
Estado’s buoys.  

Buoy n◦ OP (%) ΔMed (%) ΔPeak (%) 

B1 93.6 3.1 6.6 
B2 94.4 0.3 1.8 
B3 94.7 0.4 2.9 
B4 93.3 9.2 12.0 
B5 90.3 9.3 16.4 
B6 89.6 12.0 15.2 
B7 88.2 18.9 23.4 
B8 83.9 21.5 30.5 
B9 86.2 11.7 21. 0 
B10 87.4 18.2 29.4 
B11 85.3 13.2 29.8 
B12 86.2 16.3 24.0 
B13 94.1 5.6 11.4 
B14 91.8 −5.8 −6.8 

Mean ± STD 89.9 ± 3.7 9.6 ± 8.0 15.5 ± 11.6  

B. Thomas et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 433 (2023) 139860

7

out in this study) makes it difficult for it to simulate these complex in-
teractions. Thus, these low values of OP might not be caused by the WRF 
simulations, which might actually simulate the zone better than ERA5, 
thanks to a higher spatial resolution. González et al. (2017) also found 
low overlapping values in Tenerife island when they compared wind 
speed from WRF simulation with observed data in weather stations. 

Nevertheless, it is important to note that none of the Spanish MSP 
polygons are located within this zone. It is worth mentioning that OP 
values in this study are similar or slightly higher than those from pre-
vious analyses that validated wind speed from the CORDEX project. For 
instance, Costoya et al. (2020a) obtained similar OP values for the 
western Iberian Peninsula, while Costoya et al. (2021) obtained lower 
OP values in Chinese coastal waters. They compared their results with 
Cross-Calibrated Multi-Platform (CCMP) and ERA5 datasets, 
respectively. 

The historical wind speed data obtained from WRF was also vali-
dated by comparing it with observational data from Puertos del Estado’s 

Fig. 6. (a) Mean WPD (W.m−2) for the historical period (1985–2014), ΔWPD 
(%) for near future (2030–2059) under (b) the SSP2-4.5 and (c) SSP5-8.5 
scenarios in the continental Spain and Balearic Islands. 

Fig. 7. (a) Mean WPD (W.m−2) for the historical period (1985–2014), ΔWPD 
(%) for near future (2030–2059) under (b) the SSP2-4.5 and (c) SSP5-8.5 
scenarios in the Canary Islands. 
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buoys. The comparison was done for W10, using the metrics described in 
section 2.2. The results are presented in Table 4. The OP values for half 
of the buoys were higher than 90%, while for the remaining buoys, it 

was higher than 85% (except for buoy 8, where OP was around 84%). 
The mean value of all buoys was close to 90%, and the standard devi-
ation (3.7%) was relatively low. The ΔMed values oscillated 

Fig. 8. (a) Locations and names of the polygons, (b) classification of the wind resource for the historical period (1985–2014), and for the near future (2030–2059) 
under (c) the SSP2-4.5 and (d) SSP5-8.5 scenarios in the NOR area. 

Fig. 9. (a) Locations and names of the polygons, (b) classification of the wind resource for the historical period (1985–2014), and for the near future (2030–2059) 
under (c) the SSP2-4.5 and (d) SSP5-8.5 scenarios in the ESAL area. 
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approximately between 0 and 20% (in absolute value) and were all 
positive, except for buoy B14 (Gran Canaria). The average value for all 
buoys was around 10%, and the standard deviation was 8%, indicating a 
reasonably large interval. For ΔPeak, the absolute values were between 
2% and 30%, and all were positive, except for the same B14 buoy. The 
mean value was approximately 15%, and the significant dispersion of 
the results was confirmed by a standard deviation of almost 12%. It is 
worth noting that, with the exception of buoy B14 located in Gran 
Canaria, all ΔMed and ΔPeak values are positive. This indicates that the 
WRF model tends to overestimate wind speeds in the Iberian Peninsula 
domain and underestimate them in the Canary Islands domain. 
Although some values of ΔMed and ΔPeak may appear high, they should 
be considered in context. For instance, if WRF estimates a median wind 
speed of 6 m s−1 while the buoy measures 5 m s−1, the ΔMed value 
would be 20%. However, the actual difference between the two medians 
would only be 1 m s−1. Moreover, the metrics at buoy number 14 
location has also been calculated using data from ERA5 instead of WRF. 
The OP is lower than 65%, when ΔMed and ΔPeak values are around 
−25%. Thus, the results for the comparison between this buoy and WRF 
data are way better (Table 4), confirming that the low values of OP south 
of Tenerife island between WRF and ERA5 (Fig. 5b) are caused by a 
poorer accurate simulation from ERA5, not from WRF, in this area. 

In their study, Costoya et al. (2020a) employed the same metrics as 
this investigation to compare their outcomes with buoys B2 to B6 in this 
research. The results indicate that this study’s OP values are 5% higher 
than theirs, whereas their results showed a 2% improvement for ΔMed 
and a 0.5% improvement for ΔPeak. In Chinese territorial waters, 

Costoya et al. (2021) calculated the OP between their findings and W10 
data from six buoys, and discovered a mean value of 87.9%, which is 
slightly lower than the value obtained in this work. Lastly, Costoya et al. 
(2020b) employed CORDEX data to model W10 in the coastal waters of 
the US. They obtained comparable results to those of this analysis, with 
an average OP value of 88.8% for 15 buoys in the US west coast, and 
89.2% for 15 buoys in the US east coast. 

Results of this study, which utilized WRF with CMIP6 data as 
boundary and initial conditions, demonstrate that the simulated wind 
speed values in the studied area are accurate. The study yielded OP 
values that were slightly higher than those of previous analyses that 
validated future projections from projects such as CORDEX with ERA5 
and buoys data. 

3.2. Impact of climate change on wind power density in a near future 

Fig. 6a depicts the average WPD100 values during the 1985–2014 
period in the Iberian Peninsula and Balearic Islands domain. The highest 
WPD is observed in the northwest of Spain (~900 W m−2), the west part 
of the Strait of Gibraltar (~1000 W m−2), west of Gate Cape (~900 W 
m−2), and in the Gulf of Lion (~900–1100 W m−2), whereas the lowest 
WPD is seen in the Mediterranean part of Spanish territorial waters, 
including Balearic Islands (~200–400 W m−2). Similar findings were 
reported by Santos et al. (2018), who also identified the major WPD 
values in Galicia, the Strait of Gibraltar, and Cape Gata. Fig. 6b and c 
demonstrate the projected changes in WPD under SSP2-4.5 and SSP5-8.5 
for the near future. The results indicate that a 15% increase in WPD is 

Fig. 10. (a) Locations and names of the polygons, (b) classification of the wind resource for the historical period (1985–2014), and for the near future (2030–2059) 
under (c) the SSP2-4.5 and (d) SSP5-8.5 scenario in the LEBA area. 
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expected in all the waters of the Atlantic Ocean surrounding the Iberian 
Peninsula under SSP2-4.5, with a slightly higher increase in the Atlantic 
façade. Similar findings were reported by Fernández-Alvarez et al. 
(2023) for the 2049–2053 period. The WPD is expected to increase by 
approximately 15% at the eastern part of the Strait of Gibraltar. In the 
Mediterranean Sea, a 5–10% increase in WPD is anticipated, except for 
the waters between Mallorca and Menorca islands, where the resource is 
expected to remain constant as in the historical period. However, the 
WPD in coastal waters near Valencia and Barcelona may decrease by 
5%. The projected results for the near future under SSP5-8.5 are very 
similar, except for a 5% increase in WPD at the Spanish north coast and 
the waters located between Mallorca and Menorca islands. 

The mean WPD in the waters surrounding the Canary Islands during 
the historical period (1985–2014) is shown in Fig. 7a. The highest values 
were observed between the islands of La Palma and Gran Canaria 
(~750–1100 W m−2), while the WPD was low at the northeast and 
southwest of the islands (~300–400 W m−2). Around Fuerteventura and 
Lanzarote islands, the WPD was intermediate (~400–500 W m−2). These 
findings are consistent with the simulation results reported by González 
et al. (2017) for the 1995–2004 period. The evolution of WPD during the 
near future under SSP2-4.5 (Fig. 7b) and SSP5-8.5 (Fig. 7c) scenarios 
shows a similar pattern. A 15% increase in WPD is expected between the 
islands and in the northern area, while the increase is expected to be 
only around 0–5% at the southeast of the islands. The lowest increase is 
predicted for Gran Canaria and Tenerife islands. 

The findings of the study demonstrate that the WPD resource is 
susceptible to significant changes as a result of climate change, even in 
the near future. Consequently, it is insufficient to classify wind energy 
based solely on the historical period. It is necessary to consider both SSPs 
in the near future, as wind turbines will be generating energy during this 
period and will be affected by climate change. Furthermore, the study 
has computed the ΔWPD for the far future (2070–2099), which is pre-
sented in Fig. A1 and A2. Since the primary objective of the study is to 
assess the wind resource to facilitate the installation of offshore wind 
turbines in the near future, the figures for the far future are presented in 
the Appendix section. Under SSP2-4.5, Fig. A1a shows a similar pattern 
in the WPD changes in the Iberian Peninsula and the Balearic Islands for 

the far future than the one observed for the near future (Fig. 6b). Under 
SSP5-8.5, the changes in WPD are similar between near (Fig. 6c) and far 
(Fig. A1b) futures in the Atlantic Ocean, the Bay of Biscay and the Strait 
of Gibraltar. Nevertheless, a decrease in WPD up to −15% is expected 
during the far future in the Mediterranean Sea, especially at the Spanish 
East Coast and the Balearic Islands. In the Canary Islands, the pattern of 
changes in WPD is also highly similar between near (Fig. 7) and far 
(Fig. A2) futures. Nevertheless, in the areas where a small increase 
(around 0–5%) was expected for the near future, a decrease between 
−5% and −15% is obtained in the far future. 

3.3. Classification of the near future wind resource 

In this section, the offshore wind energy resource classification in the 
five areas included in the Spanish MSP (shown as red shapes in Fig. 1) is 
presented. Figs. 8–12 are provided, where subplot (a) shows the location 
and names of the polygons within the zone, subplot (b) displays the 
classification of the wind resource for the historical period, and subplots 
(c) and (d) show the classification for the near future period under the 
SSP2-4.5 and SSP5-8.5 scenarios, respectively. The classification has 
also been carried out for the far future under both SSPs and is shown in 
Figs. A3 to A7 in the Appendix section of this study. 

Fig. 8 shows the wind energy resource classification for the NOR 
zone. Fig. 8b represents the historical period, where the classification 
appears to decrease from NOR1 to NOR8, with NOR1 to NOR4 classified 
as “excellent”, NOR5 to NOR7 as “good”, and NOR8 as “fair”. The 
classification for the near future is quite similar for both SSP2-4.5 
(Fig. 8c) and SSP5-8.5 (Fig. 8d). The primary difference with the his-
torical classification is that NOR1 is now classified as “outstanding”, and 
a portion of NOR2 is classified as “good” under both scenarios (~35% 
and ~20% under SSP2-4.5 and SSP5-8.5, respectively). An increase in 
WPD is expected for both NOR1 and NOR2 (Fig. 6b and c) in the future. 
Nevertheless, this increase combined to a high historical WPD in NOR2 
(Fig. 6a) might result in too extreme wind speeds, thus a lower classi-
fication in the future, whereas in NOR1 the historical WPD is lower thus 
its increase in the future only results in a better classification. Costoya 
et al. (2022) also made the same classification for the 2000–2040 period, 

Fig. 11. (a) Locations and names of the polygons, (b) classification of the wind resource for the historical period (1985–2014), and for the near future (2030–2059) 
under (c) the SSP2-4.5 and (d) SSP5-8.5 scenarios in the western CAN area. 
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with similar results in this area. The results appear to be linked to the 
mean WPD and its evolution for the near future (see Fig. 6), as the 
resource is higher in the northwest corner of the Iberian Peninsula and 
decreases when following the Spanish north coast towards France. 

The classification of offshore wind energy resource for the ESAL area 
is depicted in Fig. 9, which includes two polygons. For the historical 
period, shown in Fig. 9b, and the near future under SSP2-4.5, displayed 
in Fig. 9c, the majority of ESAL1 polygon is classified as “good” (~90%). 
However, in the near future under SSP5-8.5, as depicted in Fig. 9d, it is 
characterized as “fair/good” (in equal proportions), with the lower 
classification entering from the northeast direction. The ESAL2 polygon 
is also assessed as “fair/good” in all three simulations, with the lowest 
classification covering approximately 50%, 60% and 70% of the surface 
in historical, SSP2-4.5 and SSP5-8.5 simulations, respectively. It 
consistently spands its coverage in the southward direction. Even 
though Fig. 6 exhibits a substantial historical WPD for the entire ESAL 
area, with an expected 15% increase in the near future under both SSPs, 
the lower classification compared to the NOR area may be attributed to a 
less stable wind resource or extreme wind speeds. 

The wind energy resource classification for the LEBA area is dis-
played in Fig. 10. The LEBA2 polygon is primarily classified as “fair”, 
covering approximately 80% of the area during the historical period. 
Under SSP2-4.5, it is entirely classified as “fair,” and under SSP5-8.5, it is 
classified as “good” over approximately 70% of its area. In contrast, the 
LEBA3 polygon is consistently classified as “fair/good” in both historical 

and SSP5-8.5 simulations, while only about 30% of its surface is clas-
sified as “good” under SSP2-4.5. The LEBA1 polygon is only classified as 
good in all three simulations, even though it is located in a zone with 
high WPD (Fig. 6). This suggests that, similar to the ESAL area, the re-
source’s stability may be too low, and/or wind speeds too extreme. 

In Fig. 11, the classification of the western part of the CAN area 
displays a wide range of values, ranging from poor to outstanding. This 
variability could be attributed to the high gradient of WPD observed in 
this region, as shown in Fig. 7a. The best classifications are located be-
tween the islands, whereas the worst are found at the north and south-
west of the islands, which is consistent with the distribution of historical 
WPD values (Fig. 7a) and ΔWPD values (Fig. 7b and c). Regarding the 
CAN-TEN1 polygon, it is evenly classified as “fair/good” for the histor-
ical period (Fig. 11b) and the near future under SSP2-4.5 (Fig. 11c), 
while it is classified as “good” for the near future under SSP5-8.5 
(Fig. 11d). On the other hand, both CAN-TEN2 and CAN-GC1 poly-
gons are classified as “excellent” in all three simulations, with the 
exception of CAN-TEN2 under SSP5-8.5, where 30% of its surface is 
classified as “good”. 

Fig. 12 displays the classification of the eastern CAN area, which is 
well-classified overall. Despite the WPD resource in this region being 
only intermediate compared to other areas in the Canary Islands domain 
(Fig. 7a), the main part of the eastern CAN area is classified as “excel-
lent”, with some zones even considered “outstanding”. Across all three 
simulations, the CAN-FV1 polygon is classified as “excellent”, while both 

Fig. 12. (a) Locations and names of the polygons, (b) classification of the wind resource for the historical period (1985–2014), and for the near future (2030–2059) 
under (c) the SSP2-4.5 and (d) SSP5-8.5 scenarios in the eastern CAN area. 
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the CAN-FV2 and CAN-LANZ1 polygons are classified as “excellent/ 
outstanding”, in proportions 75%/25% and 50%/50%, respectively. 

Table 5 summarizes the classification of all polygons for the histor-
ical period and near future simulations under both SSPs. The results 
indicate that NOR and CAN are generally the most suitable zones for 
wind turbine installation. The top-ranked polygons for wind turbine 
deployment are NOR1 and CAN-LANZ1, with outstanding classifica-
tions. The following best options would be NOR3, NOR4, CAN-GC1, 
CAN-FV1, and CAN-FV2. It can be noted that, despite an expected in-
crease in WPD values in the near future (see Figs. 6 and 7), the wind 
resource classification in the polygons tends not to change between 
1985-2014 and 2030–2059. These results are mainly due to an increase 
in extreme wind speeds (results not shown), that compensate the higher 
WPD resource in the classification values. Table A4 in the Appendix 
section displays the results for the far future simulations (2070–2099) 
under both SSPs. The results are quite similar than for the near future, 
except that a lower classification is expected in NOR1 and NOR2, and a 
better one in the CAN domain overall, especially under SSP5-8.5. 

Figs. 8–12 represents the final classification value of the resource 
under different scenarios and periods. It is important to mention that 
climate change can impact this classification in various ways consid-
ering the different indices involved. Thus, modifications in wind speed 
patterns affect three of the four aspects used to classify wind energy (all 
except the economic one). Climate change directly modifies wind speed 
distributions, influencing the annual wind speed index. In the Spanish 
territorial waters (Figs. 6 and 7), it seems that the values of this index 
might increase due to climate change, along with the Rich Level 
Occurrence. Nevertheless, a significant increase in offshore wind energy 
magnitudes could potentially lead to a decline in indices such as the 
Extreme Wind Speed one. Finally, regarding the stability indices, a 
seasonal analysis should be performed to evaluate whether the increase 
in offshore wind speeds is uniform throughout the year. 

4. Conclusions 

The aim of this study was to assess the changes in the offshore wind 
energy potential in Spanish territorial waters over the course of the 21st 
century. Specifically, the focus was on classifying the wind energy 

potential in the areas designated for offshore wind farms as defined by 
the latest Spanish Maritime Spatial Planning. The wind energy classifi-
cation developed in this study has a broader scope than merely 
considering wind power density when deciding where to install offshore 
wind turbines. Some areas may have high energetic potential, but they 
are not suitable for harnessing this resource, because of a high vari-
ability of the wind speeds, or values too extreme that could damage wind 
turbines. Therefore, the classification provides decision makers with 
information on the best polygons for wind turbine installation based not 
only on the quantity of energy that can be harnessed but also on other 
crucial aspects. These include the stability of the resource because 
electricity is needed throughout the year, the risk to wind turbines 
because they can be damaged under severe weather conditions and, the 
economic cost of installing because the cheaper the better. Combining 
all these factors into a single classification index is particularly valuable. 
Additionally, the study evaluates the impact of climate change on this 
classification, enabling decision makers to determine the suitability of 
polygons for wind energy harvesting in the future, not just based on 
historical data. 

The study computed wind data in the targeted areas using the WRF 
dynamic downscaling of a multi-model ensemble from the CMIP6 
project. The accuracy of these wind data was verified by comparing 
them with a reanalysis dataset and data gathered from buoys, and it was 
concluded that the simulated wind data in the studied area are reliable. 
Then, future projections under the SSP2-4.5 and SSP5-8.5 scenarios 
were considered. In summary, the key findings of this study are:  

- There is a significant increase in the offshore wind energy potential 
expected throughout all of Spain’s territorial waters in the near 
future, with particularly high increases in the Atlantic Ocean and 
most of the Canary archipelago waters. On the other hand, the 
Mediterranean Sea and southeastern areas of certain Canary Islands 
are expected to experience the lowest increases.  

- The potential wind resource classification within the offshore wind 
farm areas displays a wide range from “fair” (3/7) to “outstanding” 
(6/7). The regions that hold the greatest promise for development in 
the near future are in the northwest of the Iberian Peninsula and the 
Canary Islands. 

Table 5 
Classification of the wind resource for all polygons during the historical period (1985–2014) and the near future (2030–2059) under SSP2-4.5 and SSP5-8.5. 
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It should be noted that this whole analysis, here performed in the 
Spanish territorial waters, is applicable to every other area. Indeed, the 
CMIP6 multi-model ensemble used in this study offers data worldwide, 
which can identically be dynamically downscaled with the WRF atmo-
spheric model. Moreover, many countries already defined a MSP for 
offshore wind energy, especially all of the European coastal countries. 

Finally, it is crucial to keep in mind that wind turbines, which have 
their own operational and technical limitations, are needed for har-
nessing offshore wind energy. Thus, an interesting aspect, that has not 
been developed in this study, would be to consider the performance of 
various turbines under different simulated climatic conditions. In this 
regard, higher resolution simulation data may be necessary for polygons 
to obtain more accurate results. 
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Appendix  

• Normalization of the indices for classification 

Wann was normalized following the NREL classification (Table A1). DC and WD were normalized as specified in Table A2. The values for Tables A1 
and A2 correspond to the ones found in various studies (Costoya et al., 2019, 2020b, 2021, 2022; Zheng and Pan, 2014; Zheng et al., 2018). The 
remaining indices were normalized following the procedure outlined in Costoya et al. (2022) as detailed in Table A3.  

Table A1 
Normalization of Wann.  

Normalized value Wann (m.s−1) 

0/6 <4.4 
1/6 4.4–5.1 
2/6 5.1–5.6 
3/6 5.6–6 
4/6 6–6.4 
5/6 6.4–7 
6/6 >7   

Table A2 
Normalization of distance to coast (DC) and water depth (WD) 
parameters.  

Normalized value DC (◦) WD (m) 

0/4 >4 >500 
1/4 3–4 100–500 
2/4 2–3 50–100 
3/4 0.5–2 25–50 
4/4 <0.5 <25   
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Table A3 
Normalization of EWSO, RLO, Cv, Mv and EWS parameters.  

Normalized value EWSO (%) RLO (%) Cv Mv EWS (m.s−1) 

0/9 <10 <10 >1.9 >2.5 >27 
1/9 10–20 10–20 1.7–1.9 2.25–2.5 25.5–27 
2/9 20–30 20–30 1.5–1.7 2–2.25 24–25.5 
3/9 30–40 30–40 1.3–1.5 1.75–2 22.5–24 
4/9 40–50 40–50 1.1–1.3 1.5–1.75 21–22.5 
5/9 50–60 50–60 0.9–1.1 1.25–1.5 19.5–21 
6/9 60–70 60–70 0.7–0.9 1–1.25 18–19.5 
7/9 70–80 70–80 0.5–0.7 0.75–1 16.5–18 
8/9 80–90 80–90 0.3–0.5 0.5–0.75 15–16.5 
9/9 >90 >90 <0.3 <0.5 <15    

• Impact of climate change on Wind Power Density in a far future 

Fig. A1. Percentage of change in wind power density (ΔWPD) for the far future (2070–2099) (a) for the SSP2-4.5 scenario and (b) for the SSP5-8.5 scenario in the 
Continental Spain and Balearic Islands.  
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Fig. A2. Percentage of change in wind power density (ΔWPD) for the far future (2070–2099) (a) for the SSP2-4.5 scenario and (b) for the SSP5-8.5 scenario in the 
Canary Islands.   

• Classification of the far future wind resource 

Fig. A3. Classification of the wind resource for the far future (2070–2099) under (a) SSP2-4.5 and (b) SSP5-8.5 scenarios in the NOR area.   
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Fig. A4. Classification of the wind resource for the far future (2070–2099) under (a) SSP2-4.5 and (b) SSP5-8.5 scenarios in the ESAL area.  

Fig. A5. Classification of the wind resource for the far future (2070–2099) under (a) SSP2-4.5 and (b) SSP5-8.5 scenarios in the LEBA area.  

Fig. A6. Classification of the wind resource for the far future (2070–2099) under (a) SSP2-4.5 and (b) SSP5-8.5 scenarios in the western CAN area.   
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Fig. A7. Classification of the wind resource for the far future (2070–2099) under (a) SSP2-4.5 and (b) SSP5-8.5 scenarios in the eastern CAN area.   

Table A4 
Classification of the wind resource for all polygons during the far future (2070–2099) under SSP2-4.5 and SSP5-8.5. 
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