45 research outputs found

    Comparison of photodamage in non-pigmented and pigmented human skin equivalents exposed to repeated ultraviolet radiation to investigate the role of melanocytes in skin photoprotection

    Get PDF
    Introduction: Daily solar ultraviolet (UV) radiation has an important impact on skin health. Understanding the initial events of the UV-induced response is critical to prevent deleterious conditions. However, studies in human volunteers have ethical, technical, and economic implications that make skin equivalents a valuable platform to investigate mechanisms related to UV exposure to the skin. In vitro human skin equivalents can recreate the structure and function of in vivo human skin and represent a valuable tool for academic and industrial applications. Previous studies have utilised non-pigmented full-thickness or pigmented epidermal skin equivalents to investigate skin responses to UV exposure. However, these do not recapitulate the dermal-epidermal crosstalk and the melanocyte role in photoprotection that occurs in vivo. In addition, the UV radiation used in these studies is generally not physiologically representative of real-world UV exposure.Methods: Well-characterised pigmented and non-pigmented skin equivalents that contain human dermal fibroblasts, endogenous secreted extracellular matrix proteins (ECM) and a well-differentiated and stratified epidermis have been developed. These constructs were exposed to UV radiation for ×5 consecutive days with a physiologically relevant UV dose and subsequently analysed using appropriate end-points to ascertain photodamage to the skin.Results: We have described that repeated irradiation of full-thickness human skin equivalents in a controlled laboratory environment can recreate UV-associated responses in vitro, mirroring those found in photoexposed native human skin: morphological damage, tanning, alterations in epidermal apoptosis, DNA lesions, proliferation, inflammatory response, and ECM-remodelling.Discussion: We have found a differential response when using the same UV doses in non-pigmented and pigmented full-thickness skin equivalents, emphasising the role of melanocytes in photoprotection

    Virulence of an emerging respiratory pathogen, genus Pandoraea, in vivo and its interactions with lung epithelial cells

    Get PDF
    Pandoraea species have emerged as opportunistic pathogens among cystic fibrosis (CF) and non-CF patients. Pandoraea pulmonicola is the predominant Pandoraea species among Irish CF patients. The objective of this study was to investigate the pathogenicity and potential mechanisms of virulence of Irish P. pulmonicola isolates and strains from other Pandoraea species. Three patients from whom the P. pulmonicola isolates were isolated have since died. The in vivo virulence of these and other Pandoraea strains was examined by determining the ability to kill Galleria mellonella larvae. The P. pulmonicola strains generally were the most virulent of the species tested, with three showing a comparable or greater level of virulence in vivo relative to another CF pathogen, Burkholderia cenocepacia, whilst strains from two other species, Pandoraea apista and Pandoraea pnomenusa, were considerably less virulent. For all Pandoraea species, whole cells were required for larval killing, as cell-free supernatants had little effect on larval survival. Overall, invasive Pandoraea strains showed comparable invasion of two independent lung epithelial cell lines, irrespective of whether they had a CF phenotype. Pandoraea strains were also capable of translocation across polarized lung epithelial cell monolayers. Although protease secretion was a common characteristic across the genus, it is unlikely to be involved in pathogenesis. In conclusion, whilst multiple mechanisms of pathogenicity may exist across the genus Pandoraea, it appears that lung cell invasion and translocation contribute to the virulence of P. pulmonicola strains

    Investigation into the effect of skin tone modulators and exogenous stress on skin pigmentation utilizing a novel bioengineered skin equivalent

    Get PDF
    Human skin equivalents (HSEs) are a popular technology due to limitations in animal testing, particularly as they recapitulate aspects of structure and function of human skin. Many HSEs contain two basic cell types to model dermal and epidermal compartments, however this limits their application, particularly when investigating the effect of exogenous stressors on skin health. We describe the development of a novel platform technology that accurately replicates skin pigmentation in vitro. Through incorporation of melanocytes, specialized pigment producing cells, into the basal layer of the epidermis we are able to re-create skin pigmentation in vitro. We observe apical distribution of melanin within keratinocytes and formation of supranuclear caps (SPNCs), only when the epidermal compartment is co-cultured with a dermal compartment, leading to the conclusion that fibroblast support is essential for correct pigment organization. We also evaluate the commonly observed phenomenon that pigmentation darkens with time in vitro, which we further explore through mechanical exfoliation to remove a build-up of melanin deposits in the stratum corneum. Finally, we demonstrate the application of a pigmented HSE to investigate drug modulation of skin tone and protection from UV-induced damage, highlighting the importance of such a model in the wider context of skin biology

    Development of a novel in vitro strategy to understand the impact of shaving on skin health: combining tape strip exfoliation and human skin equivalent technology

    Get PDF
    Introduction: The removal of unwanted hair is a widespread grooming practice adopted by both males and females. Although many depilatory techniques are now available, shaving remains the most common, despite its propensity to irritate skin. Current techniques to investigate the impact of shaving regimes on skin health rely on costly and lengthy clinical trials, which hinge on recruitment of human volunteers and can require invasive biopsies to elucidate cellular and molecular-level changes. Methods: Well-characterised human skin equivalent technology was combined with a commonplace dermatological technique of tape stripping, to remove cellular material from the uppermost layer of the skin (stratum corneum). This method of exfoliation recapitulated aspects of razor-based shaving in vitro, offering a robust and standardised in vitro method to study inflammatory processes such as those invoked by grooming practices. Results: Tape strip insult induced inflammatory changes in the skin equivalent such as: increased epidermal proliferation, epidermal thickening, increased cytokine production and impaired barrier function. These changes paralleled effects seen with a single dry razor pass, correlated with the number of tape strips removed, and were attenuated by pre-application of shaving foam, or post-application of moisturisation. Discussion: Tape strip removal is a common dermatological technique, in this study we demonstrate a novel application of tape stripping, to mimic barrier damage and inflammation associated with a dry shave. We validate this method, comparing it to razor-based shaving in vitro and demonstrate the propensity of suitable shave- and skin-care formulations to mitigate damage. This provides a novel methodology to examine grooming associated damage and a platform for screening potential skin care formulations

    Cell Senescence-Independent Changes of Human Skin Fibroblasts with Age

    Get PDF
    Skin ageing is defined, in part, by collagen depletion and fragmentation that leads to a loss of mechanical tension. This is currently believed to reflect, in part, the accumulation of senescent cells. We compared the expression of genes and proteins for components of the extracellular matrix (ECM) as well as their regulators and found that in vitro senescent cells produced more matrix metalloproteinases (MMPs) than proliferating cells from adult and neonatal donors. This was consistent with previous reports of senescent cells contributing to increased matrix degradation with age; however, cells from adult donors proved significantly less capable of producing new collagen than neonatal or senescent cells, and they showed significantly lower myofibroblast activation as determined by the marker α-SMA. Functionally, adult cells also showed slower migration than neonatal cells. We concluded that the increased collagen degradation of aged fibroblasts might reflect senescence, the reduced collagen production likely reflects senescence-independent processes

    A cluster analysis of Croatian counties as the base for an active demographic policy

    Get PDF
    This paper deals with Croatian counties cluster analysis as the base for developing a proactive demographic policy. Unfortunately, Croatia has no national demographic strategy and no national population policy is carried out. Some local governments are taking isolated policy measures but due to an unsystematic and distressed network at the national level it has to date given no significant effects. The Croatian nation is currently experiencing the initial process of demographic extinction. This process began even before the great emigration wave that started about a year and half ago. Since there are no financial resources for the simultaneous and complete implementation of an active demographic policy across the entire Croatian territory, this paper proposes a new approach. Namely, the main demographic indicators have been calculated and analyzed for each Croatian county. After that, using a multivariate methodology, fifteen demographic indicators that significantly differ from county to county were selected as criteria for clustering Croatian counties by k-means method. Clustering output defines several clusters consisting of a smaller number of counties with similar demographic characteristics. These clusters form a spatial county unit in which appropriate measures of an active demographic policy should be urgently implemented. In this way the process of active demographic policy can start with less financial resources and can be limited maybe only to spaces with poorest demographic characteristics. Moreover, the results of this study might very well stimulate "richer” government units to carry out the appropriate active demographic policy measures in their areas without waiting for the adoption of laws and regulations at the national state level

    X-Ray Fluorescence Microscopy Reveals Accumulation and Secretion of Discrete Intracellular Zinc Pools in the Lactating Mouse Mammary Gland

    Get PDF
    The mammary gland is responsible for the transfer of a tremendous amount of zinc ( approximately 1-3 mg zinc/day) from maternal circulation into milk during lactation to support the growth and development of the offspring. When this process is compromised, severe zinc deficiency compromises neuronal development and immune function and increases infant morbidity and/or mortality. It remains unclear as to how the lactating mammary gland dynamically integrates zinc import from maternal circulation with the enormous amount of zinc that is secreted into milk.Herein we utilized X-ray fluorescence microscopy (XFM) which allowed for the visualization and quantification of the process of zinc transfer through the mammary gland of the lactating mouse. Our data illustrate that a large amount of zinc first accumulates in the mammary gland during lactation. Interestingly, this zinc is not cytosolic, but accumulated in large, discrete sub-cellular compartments. These zinc pools were then redistributed to small intracellular vesicles destined for secretion in a prolactin-responsive manner. Confocal microscopy identified mitochondria and the Golgi apparatus as the sub-cellular compartments which accumulate zinc; however, zinc pools in the Golgi apparatus, but not mitochondria are redistributed to vesicles destined for secretion during lactation.Our data directly implicate the Golgi apparatus in providing a large, mobilizable zinc storage pool to assist in providing for the tremendous amount of zinc that is secreted into milk. Interestingly, our study also provides compelling evidence that mitochondrial zinc pools expand in the mammary gland during lactation which we speculate may play a role in regulating mammary gland function

    The Yeast La Related Protein Slf1p Is a Key Activator of Translation during the Oxidative Stress Response

    Get PDF
    The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control
    corecore