9 research outputs found

    pengaruh model pembelajaran inductive thinking - deductive thinking terhadap hasil belajar IPS ditinjau dari jenis kelamin siswa kelas VII SMP N 2 KARTASURA

    Get PDF
    ABSTRAK Ulfah Fajar Hayati (K5411064) PENGARUH MODEL PEMBELAJARAN DEDUCTIVE THINKING–INDUCTIVE THINKING DITINJAU DARI JENIS KELAMIN TERHADAP HASIL BELAJAR SISWA KELAS VII SMP NEGERI 2 KARTASURA TAHUN AJARAN 2014/2015 (Materi Pembelajaran Kondisi Geografis dan Penduduk). Proposal Skripsi, Surakarta: Fakultas Keguruan dan Ilmu Pendidikan. Universitas Sebelas Maret. Februari 2015. Tujuan penelitian ini adalah 1) Untuk mengetahui perbedaan hasil belajar IPS materi pembelajaran kondisi geografis dan penduduk antara model pembelajaran deductive thinking dan model pembelajaran induktive thinking pada siswa kelas VII SMP Negeri 2 Kartasura tahun ajaran 2014/2015. 2) Untuk mengetahui perbedaan hasil belajar IPS materi pembelajaran kondisi geografis dan penduduk pada siswa laki-laki yang disampaikan dengan model pembelajaran deductive thinking dan model pembelajaran inductive thinking pada siswa kelas VII SMP Negeri 2 Kartasura tahun ajaran 2014/2015. 3) Untuk mengetahui perbedaan hasil belajar IPS materi pembelajaran kondisi geografis dan penduduk pada siswa perempuan yang disampaikan dengan model pembelajaran deductive thinking dan model pembelajaran inductive thinking pada siswa kelas VII SMP Negeri 2 Kartasura tahun ajaran 2014/2015. 4) Untuk mengetahui pengaruh interaksi antara model pembelajaran dan jenis kelamin terhadap hasil belajar IPS materi pembelajaran kondisi geografis dan penduduk pada siswa kelas VII SMP Negeri 2 Kartasura tahun ajaran 2014/2015. Jenis penelitian ini merupakan penelitian Quasi Eksperimental dengan rencana design grup factorial 2x2. Populasi penelitian adalah kelas VII SMP Negeri 2 Kartasura, Sukoharjo dan sampel penelitian adalah siswa kelas VIID dan VIIA Sampel tersebut diambil dengan menggunakan teknik simple random sampling. Teknik pengumpulan data menggunakan tes dalam bentuk tes obyektif pilihan ganda. Teknik analisis data yang digunakan dengan pengujian hipotesis analisis Anova Dua Arah (Two Way Anova) pada taraf signifikasi 5%

    R&D on high momentum particle identification with a pressurized Cherenkov radiator

    Get PDF
    We report on the R&D results for a Very High Momentum Particle Identification (VHMPID) detector, which was proposed to extend the charged hadron track-by-track identification in the momentum range from 5 to 25 GeV/c in the ALICE experiment at CERN. It is a RICH detector with focusing geometry using pressurized perfluorobutane (C4F80) as a Cherenkov radiator. A MWPC with a Cs1 photocathode was investigated as the baseline option for the photon detector. The results of beam tests performed on RICH prototypes using both liquid C6E14 radiator (in proximity focusing geometry for reference measurements) and pressurized C4F8O gaseous radiator will be shown in this paper. In addition, we present studies of a Csl based gaseous photon detector equipped with a MWPC having an adjustable anodecathode gap, aiming at the optimization of the chamber layout and performance in the detection of single photoelectrons. (C) 2014 Elsevier B.V. All rights reserved

    VHMPID RICH prototype using pressurized C4F8O radiator gas and VUV photon detector

    Get PDF
    A small-size prototype of a new Ring Imaging Cherenkov (RICH) detector using for the first time pressurized C4F8O radiator gas and a photon detector consisting of MWPC equipped with a CsI photocathode has been built and tested at the PS accelerator at CERN. It contained all the functional elements of the detector proposed as Very High Momentum Particle Identification (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identification in the momentum range starting from 5 potentially up to 25 GeV/c. In the paper the equipment and its elements are described and some characteristic test results are shown

    A very high momentum particle identification detector

    No full text
    A new detector concept has been investigated to extend the capabilities of heavy-ion collider experiments, represented here through the ALICE detector, in the high transverse momentum (p T region. The resulting Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides heavy-ion experiments with new opportunities to study parton-medium interactions at RHIC and LHC energies, where the creation of deconfined quark-gluon matter has been established. The detector is based on novel advances to the pressurized gaseous ring imaging Cherenkov (RICH) concept, which yield a very compact, high resolution addition to existing heavy-ion experiments. We conclude that in order for the device to yield statistically significant results not only for single particle measurements, but also for di-hadron and jet-tagged correlation studies, it has to cover contiguously up to 30% of a central barrel detector in radial direction. This will allow, for the first time, identified charged hadron measurements in jets. In this paper we summarize the physics motivations for such a device, as well as its conceptual design, layout, and integration into ALICE

    A Very High Momentum Particle Identification Detector

    No full text
    A new detector concept has been investigated to extend the capabilities of heavy-ion collider experiments, represented here through the ALICE detector, in the high transverse momentum (pT region. The resulting Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c &lt; p &lt; 25 GeV/c momentum range and provides heavy-ion experiments with new opportunities to study parton-medium interactions at RHIC and LHC energies, where the creation of deconfined quark-gluon matter has been established. The detector is based on novel advances to the pressurized gaseous ring imaging Cherenkov (RICH) concept, which yield a very compact, high resolution addition to existing heavy-ion experiments. We conclude that in order for the device to yield statistically significant results not only for single particle measurements, but also for di-hadron and jet-tagged correlation studies, it has to cover contiguously up to 30% of a central barrel detector in radial direction. This will allow, for the first time, identified charged hadron measurements in jets. In this paper we summarize the physics motivations for such a device, as well as its conceptual design, layout, and integration into ALICE.1295DE-FG02-07ER41521; DOE; National Research Foundation of Korea; NRF; National Research Foundation of Korea; NSF-PHY-0968903; NSF; National Research Foundation of Korea; NSF-PHY-1305280; NSF; National Research Foundation of Korea(2006) J. Phys. G, 32, p. 1295Sapeta, S., Wiedemann, U.A., (2008) Eur. Phys. J. C, 55, p. 293Liu, W., Fries, R., (2008) Phys. Rev. C, 77, p. 054902Hwa, R.C., Yang, C.B., (2006) Phys. Rev. Lett., 97, p. 042301Lévai, P., Berényi, D., Pásztor, A., Skokov, V.V., (2011) J. Phys. G, 38, p. 124155Aurenche, P., Zakharov, B.G., (2011) Eur. Phys. J. C, 71, p. 1829Bellwied, R., Markert, C., (2010) Phys. Lett. B, 691, p. 208Xu, Y., (2010) J. Phys. G, 37, p. 094059for the STAR Collaboration (L. Ruan), (2010) J. Phys. G, 37, p. 094013(2011) Phys. Rev. C, 83, p. 024909(2013) Phys. Lett. B, 719, p. 18Barile, F., (2011) AIP Conf. Proc., 1317, p. 71HMPID Technical Design Report CERN/LHCC 98-19 ALICE TDR 1DiMauro, A., (2010) Nucl. Instrum Methods A, 617, p. 424Albrecht, E., (2003) Nucl. Instrum Methods A, 510, p. 262Ando, S., (2006) J. Photopolym. Sci. Technol., 19, p. 351Artuso, M., (2006) Nucl. Instrum Methods A, 558, p. 373Barber, G.J., (2008) Nucl. Instrum Methods A, 593, p. 624Baillon, P., (1989) Nucl. Instrum Methods A, 277, p. 338G. Volpe, Proceedings of the RICH2010 Conference, to be published in Nucl. Instrum Methods ACozza, D., (2003) Nucl. Instrum Methods A, 502, p. 101Santiard, J.-C., (2004) Nucl. Instrum Methods A, 518, p. 498Abbon, P., (2007) Nucl. Instrum Methods A, 577, p. 455Abbon, P., (2008) Nucl. Instrum Methods A, 589, p. 362Hamar, G., Kiss, G., Varga, D., (2011) Nucl. Instrum Methods A, 648, p. 163Varga, D., Kiss, G., Hamar, G., Bencédi, G., (2013) Nucl. Instrum Methods A, 698, p. 11G. Volpe, PhD thesis, Study of Cherenkov detectors for high momentum charged particles identification in the ALICE experiment at LHC, Università degli Studi di Bari, Facolta di Scienze Matematiche, Fisiche e Naturali, Dottorato di ricerca in Fisica XIX ciclo, Anno accademico 2005-2006G. Volpe, PoS HIGH-pTLHC, 022 (2008) The VHMPID detector in the ALICE experiment at LHCD. Cozza, Internal Note RICH-ALICE/98-39(2003) Nucl. Instrum Methods A, 502, p. 300Di Mauro, A., (1999) Nucl. Instrum Methods A, 433, p. 190Hirai, M., Kumano, S., (2010) Prog. Theor. Phys. Suppl., 186, p. 252Albino, S., (2010) Rev. Mod. Phys., 82, p. 2489(2009) Phys. Rev. D, 79, p. 112005Albino B.A. Kniehl, S., Kramer, G., (2010) Phys. Rev. Lett., 104, p. 242001Albino, S., Kniehl, B.A., Kramer, G., (2008) Nucl. Phys. B, 803, p. 42De Florian, D., Sassot, R., Stratman, M., (2007) Phys. Rev. D, 76, p. 074033Albino, S., Kniehl, B.A., Kramer, G., (2008) Nucl. Phys. B, 803, p. 42Hirai, M., Kumano, S., Nagai, T.H., Sudoh, K., (2007) Phys. Rev. D, 75, p. 094009(2009) Eur. Phys. J. C, 62, p. 187Grigoryan, L., (2011) Phys. Rev. C, 83, p. 014904Nagy, Z., Soper, D.E., (2012) JHEP, 6, p. 044Gang, C., Hui-Ling, W., (2011) Int. J. Mod. Phys. E, 20, p. 667Pronko, A., (2005) Int. J. Mod. Phys. A, 20, p. 3723Kaidalov, A.B., (1987) Sov. J. Nucl. Phys., 45, p. 902Kraan, A.C., (2008) AIP Conf. Proc., 1038, p. 45(2007) PoS C, POD07, p. 027(2008) J. Phys. G, 35, p. 104096M. Purschke (for the PHENIX Collaboration), QM 2011 proceedingsH. Appelshaeuser (for the ALICE Collaboration), QM 2011 proceedingsY.J. Lie (for the CMS Collaboration), QM 2011 proceedings(2008) J. Phys. G, 35, p. 044027Wang, X.N., Gyulassy, M., (1991) Phys. Rev. D, 44, p. 3501Gyulassy, M., Lévai, P., Vitev, I., (2000) Phys. Rev. Lett., 85, p. 5535Gyulassy, M., Lévai, P., Vitev, I., (2000) Nucl. Phys. B, 571, p. 197Gyulassy, M., Lévai, P., Vitev, I., (2001) Nucl. Phys. B, 594, p. 371Barnafoldi, G., (2004) Prog. Part. Nucl. Phys., 53, p. 257Jia, J., Lacey, R., (2009) Phys. Rev. C, 79, p. 011901Markert, C., Bellwied, R., Vitev, I., (2008) Phys. Lett. B, 669, p. 92Alver, B., Roland, G., (2010) Phys. Rev. C, 81, p. 054905Gavin, S., McLerran, L., Moschelli, G., (2009) Phys. Rev. C, 79, p. 051902Nagle, J., McCumber, M., (2011) Phys. Rev. C, 83, p. 044908(2004) Eur. Phys. J. C, 33, p. S425G. Paić, A. Ortiz (for the ALICE Collaboration), ALICE-INT-2009-015, PoS(High-pT physics09)007(2011) EPJ Web of Conferences, 13, p. 03004for the ALICE Collaboration (S. Pochybova), (2009) PoS High-pT, physics09, p. 045Ellis, J.R., Geiger, K., Kowalski, H., (1996) Phys. Rev. D, 54, p. 5443(2007) J. Phys. G, 34, p. S685(2000) Eur. Phys. J. C, 17, p. 207(2009) Molnár (for the ALICE Collaboration), Proceedings of the High-pTp_T Physics for the LHC Workshop, 4-7. , February, PraguearXiv:1008.0413, ALICE-EMCal Physics Performance Report, R. Bellwied(2013) Phys. Lett. B, 718, p. 795(2013) Phys. Lett. B, 719, p. 29for the ALICE Collaboration (Y. Belikov), (2011) J. Phys. G, 38, p. 124078Lin, Z.-W., Ko, C.M., Li, B.-A., Zhang, B., Pal, S., (2005) Phys. Rev. C, 72, p. 064901Pierog, T., Werner, K., (2009) Nucl. Phys. Proc. Suppl., 196, p. 102Mikhailov, K., Werner, K., Karpenko, I., Pierog, T., (2011) Phys. Part. Nucl. Lett., 8, p. 989Appelshauser, H., (2011) J. Phys. G, 38, p. 124014Kraan, A.C., (2008) AIP Conf. Proc., 1038, p. 45Grigoryan, L., (2011) Phys. Rev. C, 83, p. 014904Aurenche, P., Zhakarov, B., (2011) Eur. Phys. J. C, 71, p. 1829arXiv:1208.0448, D. BerenyiKaidalov, A.B., (1987) Yad. Fiz., 45, p. 1452Kaidalov, A.B., (1987) Sov. J. Nucl. Phys., 45, p. 1452Tsallis, C., (2009) Eur. Phys. J. A, 40, p. 257Biro, T.S., (2008) EPL, 84, p. 56003Biro, T.S., Urmossy, K., Schram, Z., (2010) J. Phys. G, 37, p. 094027Biro, T.S., (2013) Physica A, 392, p. 3132Biro, T.S., Barnafoldi, G.G., Van, P., (2013) Eur. Phys. J. A, 49, p. 110(2012) Eur. Phys. J. C, 72, p. 2164(2010) Eur. Phys. J. C, 68, p. 345(2010) Eur. Phys. J. C, 68, p. 89Cleymans, J., Worku, D., (2012) J. Phys. G, 39, p. 025006Cleymans, J., Worku, D., (2012) Eur. Phys. J. A, 48, p. 160Becattini, F., Ferroni, L., (2004) Eur. Phys. J. C, 35, p. 243Becattini, F., Ferroni, L., (2004) Eur. Phys. J. C, 38, p. 225Wilk, G., Wlodarczyk, Z., (2009) Eur. Phys. J. A, 40, p. 299Begun, V.V., Gazdzicki, M., Gorenstein, M.I., (2008) Phys. Rev. C, 78, p. 024904Urmossy, K., Barnaföldi, G.G., Biró, T.S., (2012) Phys. Lett. B, 718, p. 12
    corecore