1,659 research outputs found

    Heat Capacity of ^3He in Aerogel

    Full text link
    The heat capacity of pure ^3He in low density aerogel is measured at 22.5 bar. The superfluid response is simultaneously monitored with a torsional oscillator. A slightly rounded heat capacity peak, 65 mu K in width, is observed at the ^3He-aerogel superfluid transition, T_{ca}. Subtracting the bulk ^3He contribution, the heat capacity shows a Fermi-liquid form above T_{ca}. The heat capacity attributed to superfluid within the aerogel can be fit with a rounded BCS form, and accounts for 0.30 of the non-bulk fluid in the aerogel, indicating a substantial reduction in the superfluid order parameter consistent with earlier superfluid density measurements.Comment: 4 pages, 5 figure

    The Role of Legal Services in the Antipoverty Program

    Get PDF
    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages

    Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers

    Full text link
    The distribution function of the free energy fluctuations in one-dimensional directed polymers with δ\delta-correlated random potential is studied by mapping the replicated problem to the NN-particle quantum boson system with attractive interactions. We find the full set of eigenfunctions and eigenvalues of this many-body system and perform the summation over the entire spectrum of excited states. It is shown that in the thermodynamic limit the problem is reduced to the Fredholm determinant with the Airy kernel yielding the universal Tracy-Widom distribution, which is known to describe the statistical properties of the Gaussian unitary ensemble as well as many other statistical systems.Comment: 23 page

    The density dependence of the transition temperature in a homogenous Bose flui

    Full text link
    Transition temperature data obtained as a function of particle density in the 4^4He-Vycor system are compared with recent theoretical calculations for 3D Bose condensed systems. In the low density dilute Bose gas regime we find, in agreement with theory, a positive shift in the transition temperature of the form ΔT/T0=γ(na3)1/3\Delta T/T_0 = \gamma(na^{3})^{1/3}. At higher densities a maximum is found in the ratio of Tc/T0T_c /T_0 for a value of the interaction parameter, na3^3, that is in agreement with path-integral Monte Carlo calculations.Comment: 4 pages, 3 figure

    A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells

    Get PDF
    We have manufactured more than 250 nominally identical paraffin-coated Cs vapor cells (30 mm diameter bulbs) for multi-channel atomic magnetometer applications. We describe our dedicated cell characterization apparatus. For each cell we have determined the intrinsic longitudinal, \sGamma{01}, and transverse, \sGamma{02}, relaxation rates. Our best cell shows \sGamma{01}/2\pi\approx 0.5 Hz, and \sGamma{02}/2\pi\approx 2 Hz. We find a strong correlation of both relaxation rates which we explain in terms of reservoir and spin exchange relaxation. For each cell we have determined the optimal combination of rf and laser powers which yield the highest sensitivity to magnetic field changes. Out of all produced cells, 90% are found to have magnetometric sensitivities in the range of 9 to 30 fTHz. Noise analysis shows that the magnetometers operated with such cells have a sensitivity close to the fundamental photon shot noise limit

    A multi-color and Fourier study of RR Lyrae variables in the globular cluster NGC 5272 (M3)

    Get PDF
    We have performed a detailed study of the pulsational and evolutionary characteristics of 133 RR Lyrae stars in the globular cluster NGC5272 (M3) using highly accurate BVI data taken on 5 separate epochs. M3 seems to contain no less than ~32% of Blazhko stars, and the occurrence and characteristics of the Blazhko effect have been analyzed in detail. We have identified a good number (~ 14%) of overluminous RR Lyrae stars that are likely in a more advanced evolutionary stage off the Zero Age Horizontal Branch (ZAHB). Physical parameters (i.e. temperature, luminosity, mass) have been derived from (B--V) colors and accurate color-temperature calibration, and compared with Horizontal Branch evolutionary models and with the requirements of stellar pulsation theory. Additional analysis by means of Fourier decomposition of the V light curves confirms, as expected, that no metallicity spread is present in M3. Evolution off the ZAHB does not affect [Fe/H] determinations, whereas Blazhko stars at low amplitude phase do affect [Fe/H] distributions as they appear more metal-rich. Absolute magnitudes derived from Fourier coefficients might provide useful average estimates for groups of stars, if applicable, but do not give reliable {\em individual} values. Intrinsic colors derived from Fourier coefficients show significant discrepancies with the observed ones, hence the resulting temperatures and temperature-related parameters are unreliable.Comment: 86 pages, 19 figures, 13 tables, in press A

    Cooper Pairing in Ultracold K-40 Using Feshbach Resonances

    Full text link
    We point out that the fermionic isotope K-40 is a likely candidate for the formation of Cooper pairs in an ultracold atomic gas. Specifically, in an optical trap that simultaneously traps the spin states |9/2,-9/2> and |9/2,-7/2>, there exists a broad magnetic field Feshbach resonance at B = 196 gauss that can provide the required strong attractive interaction between atoms. An additional resonance, at B = 191 gauss, could generate p-wave pairing between identical |9/2,-7/2> atoms. A Cooper-paired degenerate Fermi gas could thus be constructed with existing ultracold atom technology.Comment: 4 pages, 2 figs, submitted to Phys. Rev.

    Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence

    Full text link
    We provide a comprehensive report on scale-invariant fluctuations of growing interfaces in liquid-crystal turbulence, for which we recently found evidence that they belong to the Kardar-Parisi-Zhang (KPZ) universality class for 1+1 dimensions [Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 34 (2011)]. Here we investigate both circular and flat interfaces and report their statistics in detail. First we demonstrate that their fluctuations show not only the KPZ scaling exponents but beyond: they asymptotically share even the precise forms of the distribution function and the spatial correlation function in common with solvable models of the KPZ class, demonstrating also an intimate relation to random matrix theory. We then determine other statistical properties for which no exact theoretical predictions were made, in particular the temporal correlation function and the persistence probabilities. Experimental results on finite-time effects and extreme-value statistics are also presented. Throughout the paper, emphasis is put on how the universal statistical properties depend on the global geometry of the interfaces, i.e., whether the interfaces are circular or flat. We thereby corroborate the powerful yet geometry-dependent universality of the KPZ class, which governs growing interfaces driven out of equilibrium.Comment: 31 pages, 21 figures, 1 table; references updated (v2,v3); Fig.19 updated & minor changes in text (v3); final version (v4); J. Stat. Phys. Online First (2012
    • …
    corecore