27 research outputs found
Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract
The glycemic carbohydrates we consume are currently viewed in an unfavorable light in both the consumer and medical research worlds. In significant part, these carbohydrates, mainly starch and sucrose, are looked upon negatively due to their rapid and abrupt glucose delivery to the body which causes a high glycemic response. However, dietary carbohydrates which are digested and release glucose in a slow manner are recognized as providing health benefits. Slow digestion of glycemic carbohydrates can be caused by several factors, including food matrix effect which impedes α-amylase access to substrate, or partial inhibition by plant secondary metabolites such as phenolic compounds. Differences in digestion rate of these carbohydrates may also be due to their specific structures (e.g. variations in degree of branching and/or glycosidic linkages present). In recent years, much has been learned about the synthesis and digestion kinetics of novel α-glucans (i.e. small oligosaccharides or larger polysaccharides based on glucose units linked in different positions by α-bonds). It is the synthesis and digestion of such structures that is the subject of this review
Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors
Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review
Background:
Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.<p></p>
Methods/Principal Findings:
We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.<p></p>
Conclusions/Significance:
C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.<p></p>
Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4
Five newly isolated mycobacteriophages –Angelica, CrimD, Adephagia, Anaya, and Pixie – have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them – with the exception of TM4 – form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Absolute-frequency measurements with a stabilized near-infrared opticalfrequency comb from a Cr:forsterite laser
A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8,um. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's optical frequency standard based on neutral calcium and to a hydrogen maser that is calibrated by a cesium atomic fountain clock. With this comb we measured two frequency references in the telecommunications band: one half of the frequency of the d/{ crossover transition in 87Rb at 780 nm, and the methane 7)2 + 27)3 R(8) line at 1315 nm
Recommended from our members
Multisystem Inflammatory Syndrome in Children: Survey of Protocols for Early Hospital Evaluation and Management.
ObjectiveTo describe the similarities and differences in the evaluation and treatment of multisystem inflammatory syndrome in children (MIS-C) at hospitals in the US.Study designWe conducted a cross-sectional survey from June 16 to July 16, 2020, of US children's hospitals regarding protocols for management of patients with MIS-C. Elements included characteristics of the hospital, clinical definition of MIS-C, evaluation, treatment, and follow-up. We summarized key findings and compared results from centers in which >5 patients had been treated vs those in which ≤5 patients had been treated.ResultsIn all, 40 centers of varying size and experience with MIS-C participated in this protocol survey. Overall, 21 of 40 centers required only 1 day of fever for MIS-C to be considered. In the evaluation of patients, there was often a tiered approach. Intravenous immunoglobulin was the most widely recommended medication to treat MIS-C (98% of centers). Corticosteroids were listed in 93% of protocols primarily for moderate or severe cases. Aspirin was commonly recommended for mild cases, whereas heparin or low molecular weight heparin were to be used primarily in severe cases. In severe cases, anakinra and vasopressors frequently were recommended; 39 of 40 centers recommended follow-up with cardiology. There were similar findings between centers in which >5 patients vs ≤5 patients had been managed. Supplemental materials containing hospital protocols are provided.ConclusionsThere are many similarities yet key differences between hospital protocols for MIS-C. These findings can help healthcare providers learn from others regarding options for managing MIS-C
The Changes in The Compressive and Tensile Yield Strengths During Uniaxial Cyclic Loading
80 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1983.Many of the multiaxial unified-creep plasticity theories which have been proposed as a means to improve design at elevated temperatures have suffered from the drawback that the manner in which the state variables change is difficult to measure. A unified creep-plasticity theory for uniaxial loading which uses the yield strengths in tension, Y(,1), and compression, Y(,2), as the state variables is investigated as the means of improving the formulation of such theories. The yield strengths are easily measured and can be readily transformed to the state variables commonly used in the multiaxial theories.The yield strengths were measured during a completely reversed cyclic strain amplitude history for 304 stainless steel at 23(DEGREES)C and 600(DEGREES)C, and for Inconel 751 at 788(DEGREES)C and 927(DEGREES)C. The data from these experiments were then plotted in the (Y(,1),Y(,2)) plane and a geometric model of how the state variables change during loading was constructed.The model clearly demonstrates that on each loading reversal kinematic hardening is the predominate type of hardening. The observed limit cycle behavior of the state variables requires that there be an isotropic softening, or decrease in the elastic range, at the beginning of each reversal. This is followed by a rapid isotropic hardening at the end of the reversal. However, this behavior was obscured by the scatter in the data which was on the order of 10 percent of the elastic range.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD