34 research outputs found

    Clustering of Alzheimer's and Parkinson's disease based on genetic burden of shared molecular mechanisms

    Get PDF
    One of the visions of precision medicine has been to re-define disease taxonomies based on molecular characteristics rather than on phenotypic evidence. However, achieving this goal is highly challenging, specifically in neurology. Our contribution is a machine-learning based joint molecular subtyping of Alzheimer’s (AD) and Parkinson’s Disease (PD), based on the genetic burden of 15 molecular mechanisms comprising 27 proteins (e.g. APOE) that have been described in both diseases. We demonstrate that our joint AD/PD clustering using a combination of sparse autoencoders and sparse non-negative matrix factorization is reproducible and can be associated with significant differences of AD and PD patient subgroups on a clinical, pathophysiological and molecular level. Hence, clusters are disease-associated. To our knowledge this work is the first demonstration of a mechanism based stratification in the field of neurodegenerative diseases. Overall, we thus see this work as an important step towards a molecular mechanism-based taxonomy of neurological disorders, which could help in developing better targeted therapies in the future by going beyond classical phenotype based disease definitions

    Parkinson's disease age at onset genome-wide association study : Defining heritability, genetic loci, and α-synuclein mechanisms

    Get PDF
    Background Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. Objectives To identify the genetic determinants of PD age at onset. Methods Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. Results We estimated that the heritability of PD age at onset attributed to common genetic variation was similar to 0.11, lower than the overall heritability of risk for PD (similar to 0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in alpha-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. Conclusions Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. (c) 2019 International Parkinson and Movement Disorder SocietyPeer reviewe

    A Modified Progressive Supranuclear Palsy Rating Scale

    Get PDF
    Background: The Progressive Supranuclear Palsy Rating Scale is a prospectively validated physician-rated measure of disease severity for progressive supranuclear palsy. We hypothesized that, according to experts' opinion, individual scores of items would differ in relevance for patients' quality of life, functionality in daily living, and mortality. Thus, changes in the score may not equate to clinically meaningful changes in the patient's status. Objective: The aim of this work was to establish a condensed modified version of the scale focusing on meaningful disease milestones. Methods: Sixteen movement disorders experts evaluated each scale item for its capacity to capture disease milestones (0 = no, 1 = moderate, 2 = severe milestone). Items not capturing severe milestones were eliminated. Remaining items were recalibrated in proportion to milestone severity by collapsing across response categories that yielded identical milestone severity grades. Items with low sensitivity to change were eliminated, based on power calculations using longitudinal 12-month follow-up data from 86 patients with possible or probable progressive supranuclear palsy. Results: The modified scale retained 14 items (yielding 0–2 points each). The items were rated as functionally relevant to disease milestones with comparable severity. The modified scale was sensitive to change over 6 and 12 months and of similar power for clinical trials of disease-modifying therapy as the original scale (achieving 80% power for two-sample t test to detect a 50% slowing with n = 41 and 25% slowing with n = 159 at 12 months). Conclusions: The modified Progressive Supranuclear Palsy Rating Scale may serve as a clinimetrically sound scale to monitor disease progression in clinical trials and routine

    Investigation of autosomal genetic sex differences in Parkinson's disease

    Get PDF
    Objective: Parkinson's disease (PD) is a complex neurodegenerative disorder. Men are on average similar to 1.5 times more likely to develop PD compared to women with European ancestry. Over the years, genomewide association studies (GWAS) have identified numerous genetic risk factors for PD, however, it is unclear whether genetics contribute to disease etiology in a sex-specific manner.Methods: In an effort to study sex-specific genetic factors associated with PD, we explored 2 large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases, and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases.Results: In total, 19 genomewide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWAS were identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (similar to 20%).Interpretation: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females cases at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus female patients.Neurological Motor Disorder

    Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson's disease

    Get PDF
    A key driver of patients' well-being and clinical trials for Parkinson's disease (PD) is the course that the disease takes over time (progression and prognosis). To assess how genetic variation influences the progression of PD over time to dementia, a major determinant for quality of life, we performed a longitudinal genome-wide survival study of 11.2 million variants in 3,821 patients with PD over 31,053 visits. We discover RIMS2 as a progression locus and confirm this in a replicate population (hazard ratio (HR) = 4.77, P = 2.78 x 10(-11)), identify suggestive evidence for TMEM108 (HR = 2.86, P = 2.09 x 10(-8)) and WWOX (HR = 2.12, P = 2.37 x 10(-8)) as progression loci, and confirm associations for GBA (HR = 1.93, P = 0.0002) and APOE (HR = 1.48, P = 0.001). Polygenic progression scores exhibit a substantial aggregate association with dementia risk, while polygenic susceptibility scores are not predictive. This study identifies a novel synaptic locus and polygenic score for cognitive disease progression in PD and proposes diverging genetic architectures of progression and susceptibility.A genome-wide survival study identifies variants at RIMS2 associated with progression of Parkinson's disease to dementia and highlights divergence in the genetic architecture of disease onset and progression.Neurological Motor Disorder

    Towards a multi-arm multi-stage platform trial of disease modifying approaches in Parkinson’s disease

    Get PDF
    An increase in the efficiency of clinical trial conduct has been successfully demonstrated in the oncology field, by the use of multi-arm, multi-stage trials allowing the evaluation of multiple therapeutic candidates simultaneously, and seamless recruitment to phase 3 for those candidates passing an interim signal of efficacy. Replicating this complex innovative trial design in diseases such as Parkinson’s disease is appealing, but in addition to the challenges associated with any trial assessing a single potentially disease modifying intervention in Parkinson’s disease, a multi-arm platform trial must also specifically consider the heterogeneous nature of the disease, alongside the desire to potentially test multiple treatments with different mechanisms of action. In a multi-arm trial, there is a need to appropriately stratify treatment arms to ensure each are comparable with a shared placebo/standard of care arm; however, in Parkinson’s disease there may be a preference to enrich an arm with a subgroup of patients that may be most likely to respond to a specific treatment approach. The solution to this conundrum lies in having clearly defined criteria for inclusion in each treatment arm as well as an analysis plan that takes account of predefined subgroups of interest, alongside evaluating the impact of each treatment on the broader population of Parkinson’s disease patients. Beyond this, there must be robust processes of treatment selection, and consensus derived measures to confirm target engagement and interim assessments of efficacy, as well as consideration of the infrastructure needed to support recruitment, and the long-term funding and sustainability of the platform. This has to incorporate the diverse priorities of clinicians, triallists, regulatory authorities and above all the views of people with Parkinson’s disease

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis

    Get PDF
    Background Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. Methods We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. Results We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67–82]), than encephalopathy (54% [42–65]). Intensive care use was high (38% [35–41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27–32]. The hazard of death was comparatively lower for patients in the WHO European region. Interpretation Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies
    corecore