74 research outputs found

    Disruptive and Conventional Technologies for the Support of Logistics Processes: A Literature Review

    Get PDF
    The supply chain has become a key element of increasing the productivity and competitiveness of companies. To achieve this, it is essential to implement a strategy based on the use of technologies, which depends on knowledge of the scope and impact of logistics technologies. Therefore, this article aims to identify the main technologies supporting logistics management and supply chain processes to establish their functionality, scope, and impacts. For this, conventional technologies and technologies framed by the concept of Industry 4.0 that allow the implementation of Logistics 4.0 in companies are analyzed. As a result of searching databases such as Scopus, Web of Science, and Science Direct, we provide an analysis of 18 technologies focusing on their definition, scope, and the logistics processes involved. This study concludes that technologies in logistics management allow for a reduction in total costs, improve collaboration with suppliers and customers, increase the visibility and traceability of products and information, and support decision-making for all agents in the supply chain, including the final consumer

    Do new records of macrofungi indicate warming of their habitats in terrestrial Antarctic ecosystems?

    Get PDF
    Relatively few macrofungi have been historically described from terrestrial environments of the Antarctic Peninsula and its associated archipelagos which are characterized by a moss-dominated vegetation, most of them preferentially or obligatorily associated with bryophytes. During the study of the influence of penguin rockeries to moss communities on the South Shetland Islands, the bryophilous basidiomycetes Rimbachia bryophila and Arrhenia cf. lilacinicolor were found for the first time on King George Island, growing on carpets of Sanionia uncinata. Other bryophilous fungi previously recorded in the same region are Arrhenia antarctica, Omphalina pyxidata and the rare Simocybe antarctica. The detection of the supposedly parasitic R. bryophila, together with other new observations of macrofungi on different hosts in the Antarctic bryoflora could indicate increased sexual reproduction. The likely increase of reproduction as an effect of warming on the terrestrial antarctic tundra should be proven by follow up field studies

    Characterization of Surface State of Inert Particles: Case of Si and SiC

    Get PDF
    Silicon and Silicon carbide particles have been investigated by the mean of infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to establish their surface states. The results of this research are based on the estimation of the area under the high resolution peaks by isosceles triangles. This approach leads to the repartition of the particles surfaces in term of atomic percentage and of type of bonds. The surface of silicon particles is divided up into 54.85% of Si-O bonds and 36.85% of Si-Si bonds. The remaining surface is constituted of zeolite, the raw material used to produce the silicon particles. The surface of silicon carbide particles consists of 50.44% of Si-C bonds, 24.01% of Si-O bonds and 25.55% of graphite. 10.01% of the graphite is derived from the oxidation of Si-C bonds while 11.48% is due to contamination. The zeta potential evolution versus pH confirms the distribution of chemical groups found

    Inkjet Printing Meets Electrochemical Energy Conversion

    Get PDF
    Inkjet printing is a very powerful digital and mask-less microfabrication technique that has attracted the attention of several research groups working on electrochemical energy conversion concepts. In this short review, an overview is given about recent efforts to employ inkjet printing for the search of new electrocatalyst materials and for the preparation of catalyst layers for polymer electrolyte membrane fuel cell applications. Recent approaches of the Laboratory of Physical and Analytical Electrochemistry (LEPA) at the École Polytechnique FĂ©dĂ©rale de Lausanne for the inkjet printing of catalyst layers and membrane electrode assemblies are presented and future energy research directions of LEPA based on inkjet printing in the new Energypolis campus in the Canton of Valais are summarized

    Analytical Chemistry at the Laboratoire d'Electrochimie Physique et Analytique

    Get PDF
    The Laboratoire d'Electrochimie Physique et Analytique (LEPA) has moved to the new Energypolis campus in Sion. This laboratory is involved in energy research in particular by studying charge transfer reactions at soft interfaces and developing interfacial redox electrocatalysis, by pioneering the concept of photo-ionic cells and by integrating redox flow batteries for the production of hydrogen at the pilot scale. Nonetheless, this laboratory has a long tradition in analytical chemistry with the development of microfabrication techniques such as laser photo-ablation, screen-printing and more recently inkjet printing for the design and fabrication of biosensors and immunosensors. As shown in the present review, the laboratory has recently pioneered new technologies for electrochemical and mass spectrometry imaging and for the screening of allergy in patients. The role of the laboratory in the Valais landscape will be to foster the collaboration with the HES to develop teaching and research in analytical chemistry as this field is a major source of employment for chemists

    Oxygen and hydrogen peroxide reduction by 1,2-diferrocenylethane at a liquid/liquid interface

    Get PDF
    Molecular oxygen and hydrogen peroxide reduction by 1,2-diferrocenylethane (DFcE) was investigated at a polarized water/1,2-dichloroethane (W/DCE) interface. The overall reaction points to a proton-coupled electron transfer (PCET) mechanism, where the first step consists of the protonation of DFcE to form the DFcE–H+ in DCE phase, either by DFcE facilitated proton transfer across the liquid–liquid interface or by the homogeneous protonation of DFcE in the presence of protons extracted in the oil phase by tetrakis(pentafluorophenyl)borate. The formation of DFcE–H+ is followed up by the O2 reduction to hydrogen peroxide and further reduction to water. The final products of DFcE oxidation, namely DFcE+ or DFcE2+, were investigated by ion transfer voltammetry, ultramicroelectrode voltammetry and UV/visible spectroscopy. These results show that mostly DFcE+ is produced, although DFcE+ can also reduce oxygen at longer time scales. Hydrogen peroxide reduction is actually faster than oxygen reduction, but both reactions are slow due to relatively low thermodynamic driving force

    Inkjet-printed microtiter plates for portable electrochemical immunoassays

    Get PDF
    Herein, we present the large-scale fabrication of multiplexed three-electrode sensors used in a point-of-care device platform that couples a magnetic bead-based immunoassay strategy with amperometric detection for rapid and highly sensitive analysis. The multiplexed sensors consisted of eight independent electrochemical cells, each with a carbon nanotube (CNT) working electrode, CNT counter electrode and a silver-silver chloride quasi-reference electrode. The microchips were fabricated on flexible polyethylene terephthalate (PET) sheets by sequential multilayer inkjet printing (IJP) of silver, CNT and insulator inks that were either simultaneously or subsequently post-processed (e.g. through UV photo-polymerization or photonic curing). Finally, plastic wells were mounted on top of the inkjet-printed patterns to obtain an eight-well microtiter plate where each well had a solution capacity of 50 ÎŒL. Due to the high precision of the IJP process, the microtiter plates showed high reproducibility among the individual electrochemical cells (1–2% of deviation). Furthermore, the microchips can be reusable for at least up to 20 times as demonstrated herein. In a customized multichannel potentiostat with eight implemented magnets matching the positions of the working electrodes, the electrochemical readout of magnetic bead based sandwich and competitive immunoassays was successfully realized for the detection of thyroid-stimulating hormone (TSH) and atrazine (ATR) in aqueous and urine samples, respectively. The achieved limits of detection for ATR (i.e. 0.01 ÎŒg/L) and TSH (i.e. 0.5 ÎŒIU/mL) demonstrated the potential of the IJP microtiter plates for the environmental and biological quantification of analytes in a very reliable high throughput platform. This work shows that IJP has certainly reached the status of a batch production tool for electroanalytical sensing platform

    Untersuchung der Tyrosinase-Expression in nicht-metastatischen und metastatischen Melanomgeweben durch elektrochemische Rastersondenmikroskopie

    Get PDF
    Trotz des enormen Fortschritts, der bei der Diagnose von Melanomen erzielt wurde, bleibt die zuverlĂ€ssige Erkennung der verschiedenen Malignomstadien eine Herausforderung. Derzeitige Strategien setzen auf die optische Erfassung der Konzentration und rĂ€umlichen Verteilung spezifischer Biomarker. Neueste optische Methoden können allerdings durch Interferenzen mit Hintergrundfarben und durch Autofluoreszenz beeinflusst werden. Wir bewĂ€ltigen diese Defizite hier unter Einsatz der elektrochemischen Rastersondenmikroskopie (SECM), um den prognostischen Indikator Tyrosinase (TyR) in nicht-metastatischen und metastatischen Melanomgeweben mithilfe einer weichen Mikroelektrodensonde abzubilden. Das elektrochemische Auslesen der TyR-Verteilung wurde durch das Adaptieren eines immunchemischen Verfahrens ermöglicht. Wir zeigen, dass die SECM die erwĂ€hnten BeschrĂ€nkungen optischer Methoden ĂŒbertreffen kann und bisher nicht gekannte Möglichkeiten fĂŒr eine verbesserte Diagnose und das VerstĂ€ndnis der rĂ€umlichen Verteilung von TyR in verschiedenen Melanomstadien eröffnet

    Oxygen reduction at soft interfaces catalyzed by in situ-generated reduced graphene oxide

    Get PDF
    peer-reviewedFace to face: Flakes of reduced graphene oxide, synthesized in situ at the liquid/liquid interface from a graphene‐oxide precursor, are capable of catalyzing the biphasic reduction of protons to hydrogen peroxide in the presence of molecular oxygen and an organic solubilized electron donor. This offers a new perspective for the bulk production of a green oxidant through biphasic electrolysisACCEPTEDpeer-reviewe
    • 

    corecore