78 research outputs found

    Chronic stress targets adult neurogenesis preferentially in the suprapyramidal blade of the rat dorsal dentate gyrus

    Get PDF
    First Online: 29 August 2017The continuous generation of new neurons and glial cells in the adult hippocampal dentate gyrus (DG) represents an important form of adult neuroplasticity, involved in normal brain function and behavior but also associated with the etiopathogenesis and treatment of psychiatric disorders. Despite the large number of studies addressing cell genesis along the septotemporal axis, data on the anatomical gradients of cytogenesis along the DG transverse axis is scarce, especially after exposure to stress. As such, in this study we characterized both basal proliferation and survival of adult-born neural cells along the transverse axis of the rat dorsal DG, and after stress exposure. In basal conditions, both proliferating cells and newborn neurons and glial cells were preferentially located at the subgranular zone and suprapyramidal blade. Exposure to chronic stress induced an overall decrease in the generation of adult-born neural cells and, more specifically, produced a regional-specific decrease in the survival of adult-born neurons at the suprapyramidal blade. No particular region-specific alterations were observed on surviving adult-born glial cells. This work reveals, for the first time, a distinct survival profile of adult-born neural cells, neurons and glial cells, among the transverse axis of the DG, in both basal and stress conditions. Our results unveil that adult-born neurons are preferentially located in the suprapyramidal blade and suggest a regional-specific impact of chronic stress in this blade with potential repercussions for its functional significance.NDA, PP, AMP, ARMS, MM and LP received fellowships from the Portuguese Foundation for Science and Technology (FCT). This work was funded by FCT (IF/01079/2014). This article has been developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038.info:eu-repo/semantics/publishedVersio

    Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain

    Get PDF
    Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen

    CD81 promotes a migratory phenotype in neuronal-like cells

    Get PDF
    Tetraspanins, such as CD81, can form lateral associations with each other and with other transmembrane proteins. These interactions may underlie CD81 functions in multiple cellular processes, such as adhesion, morphology, migration, and differentiation. Since CD81's role in neuronal cells' migration has not been established, we here evaluated effects of CD81 on the migratory phenotype of SH-SY5Y neuroblastoma cells. CD81 was found enriched at SH-SY5Y cell's membrane, co-localizing with its interactor filamentous-actin (F-actin) in migratory relevant structures of the leading edge (filopodia, stress fibers, and adhesion sites). CD81 overexpression increased the number of cells with a migratory phenotype, in a potentially phosphatidylinositol 3 kinase (PI3K)-Ak strain transforming (AKT) mediated manner. Indeed, CD81 also co-localized with AKT, a CD81-interactor and actin remodeling agent, at the inner leaflet of the plasma membrane. Pharmacologic inhibition of PI3K, the canonical AKT activator, led both to a decrease in the acquisition of a migratory phenotype and to a redistribution of intracellular CD81 and F-actin into cytoplasmic agglomerates. These findings suggest that in neuronal-like cells CD81 bridges active AKT and actin, promoting the actin remodeling that leads to a motile cell morphology. Further studies on this CD81-mediated mechanism will improve our knowledge on important physiological and pathological processes such as cell migration and differentiation, and tumor metastasis.This work was supported by Fundação para a Ciência e Tecnologia (Portuguese Ministry of Science and Technology), Centro 2020 and Portugal2020, the COMPETE program, QREN, and the European Union (FEDER program) via the Institute for Biomedicine iBiMED UID/BIM/ 04501/2013, fellowship SFRH/BD/90996/2012, project PTDC/CVT-CVT/ 32261/2017, and the support of the LiM facility of iBiMED, a member of the Portuguese Platform of BioImaging (PPBI- POCI-01-0145-FEDER-022122).publishe

    Imidazole derivatives as promising agents for the treatment of Chagas disease

    Get PDF
    More than 100 years later after being firstly described, Chagas disease remains endemic in 21 Latin American countries and has spread to other continents. Indeed, this disease, caused by the protozoan parasite Trypanosoma cruzi, is no longer just a problem for the American continent but has become a global health threat. Current therapies, nifurtimox and benznidazole (Bz), are far from being adequate due to undesirable effects and their lack of efficacy in the chronic phases of the disease. In this work, we present an in-depth phenotypical evaluation in T.cruzi of a new class of imidazole compounds, discovered in a previous phenotypic screening against different trypanosomatids and designed as potential inhibitors of cAMP phosphodiesterases (PDEs). The confirmation of several activities similar or superior to Bz prompted a synthesis program of hit optimization and extended SAR, aimed at improving drug-like properties such as aqueous solubility, resulting in additional hits with IC50 similar to Bz. The cellular effects of one representative hit, compound 9, on bloodstream trypomastigotes were further investigated. Transmission electron microscopy revealed cellular changes, after just 2 h of incubation with the IC50 concentration, that were consistent with induced autophagy and osmotic stress - mechanisms previously linked to cAMP signaling. Compound 9 induced highly significant increases in both cellular and medium cAMP, confirming that inhibition of T.cruzi PDE(s) is part of its mechanism of action. The potent and selective activity of this imidazole-based PDE inhibitor class against T.cruzi constitutes a successful repurposing of research into inhibitors of mammalian PDEs

    Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment

    Get PDF
    The present study reports the fabrication of dissolvable microneedle (MN) patches using pullulan (PL), a water-soluble polysaccharide with excellent film-forming ability, for the transdermal administration of insulin, envisioning the non-invasive treatment of diabetes. PL MNs patches were successfully prepared by micromoulding and revealed good thermal stability (Tdmax = 294 °C) and mechanical properties (>0.15 N needle-1), penetrating skin up to 381 μm depth, as revealed by in vitro skin tests. After application into human abdominal skin in vitro, the MNs dissolved within 2 h releasing up to 87% of insulin. When stored at 4, 20 and 40 °C for 4 weeks, insulin was able to retain its secondary structure, as shown by circular dichroism spectropolarimetry. The prepared PL MNs were non-cytotoxic towards human keratinocytes, being suitable for skin application. These findings suggest that PL MNs have potential to deliver insulin transdermally, thus avoiding its subcutaneous administration.publishe

    Lower NPAS3 expression during the later stages of abnormal lung development in rat congenital diaphragmatic hernia

    Get PDF
    Purpose Congenital diaphragmatic hernia (CDH) is characterized by a developmental defect in the diaphragm, pulmonary hypoplasia and pulmonary hypertension. NPAS3 is a PAS domain transcription factor regulating Drosophila tracheogenesis. NPAS3 null mice develop pulmonary hypoplasia in utero and die after birth due to respiratory failure. We aimed to evaluate NPAS3 expres- sion during normal and abnormal lung development due to CDH. Methods CDH was induced by administering 100 mg/ml nitrofen to time-pregnant dams on embryonic day (E) 9 of gestation. Lungs were isolated on E15, E18 and E21 and NPAS3 localization was determined by immunohisto- chemistry and quantified using Western blotting. Results We found that only E21 hypoplastic CDH lungs have reduced expression of NPAS3 in the terminal sac- cules. Western blotting confirmed the down-regulation of NPAS3 protein in the nitrofen-induced hypoplastic lungs. Conclusions We demonstrate for the first time that ni- trofen-induced hypoplastic CDH lungs have reduced NPAS3 expression in the terminal saccules during the later stages of abnormal lung development. Our findings suggest that NPAS3 is associated with pulmonary hypoplasia in CDH.Supported by the Children’s Hospital Research Institute of Manitoba; RK is the recipient of a Career Enhancement Award from the Canadian Child Health Clinician Scientist Program and a New Investigator Salary Award from the Canadian Institutes of Health Research, Manitoba Lung Association and the Children’s Hospital Research Institute

    Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi

    Get PDF
    BACKGROUND: Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, needs urgent alternative therapeutic options as the treatments currently available display severe limitations, mainly related to efficacy and toxicity. OBJECTIVES: As phosphodiesterases (PDEs) have been claimed as novel targets against T. cruzi, our aim was to evaluate the biological aspects of 12 new phthalazinone PDE inhibitors against different T. cruzi strains and parasite forms relevant for human infection. METHODS: In vitro trypanocidal activity of the inhibitors was assessed alone and in combination with benznidazole. Their effects on parasite ultrastructural and cAMP levels were determined. PDE mRNA levels from the different T. cruzi forms were measured by quantitative reverse transcription PCR. RESULTS: Five TcrPDEs were found to be expressed in all parasite stages. Four compounds displayed strong effects against intracellular amastigotes. Against bloodstream trypomastigotes (BTs), three were at least as potent as benznidazole. In vitro combination therapy with one of the most active inhibitors on both parasite forms (NPD-040) plus benznidazole demonstrated a quite synergistic profile (xΣ FICI = 0.58) against intracellular amastigotes but no interaction (xΣ FICI = 1.27) when BTs were assayed. BTs treated with NPD-040 presented disrupted Golgi apparatus, a swollen flagellar pocket and signs of autophagy. cAMP measurements of untreated parasites showed that amastigotes have higher ability to efflux this second messenger than BTs. NPD-001 and NPD-040 increase the intracellular cAMP content in both BTs and amastigotes, which is also released into the extracellular milieu. CONCLUSIONS: The findings demonstrate the potential of PDE inhibitors as anti-T. cruzi drug candidates

    Characterization of miRNA processing machinery in the embryonic chick lung

    Get PDF
    Lung development is a very complex process that relies on the interaction of several signaling pathways that are controlled by precise regulatory mechanisms. Recently, microRNAs (miRNAs), small non-coding regulatory RNAs, have emerged as new players involved in gene expression regulation controlling several biological processes, such as cellular differentiation, apoptosis and organogenesis, in both developmental and disease processes. Failure to correctly express some specific miRNAs or a component of their biosynthetic machinery during embryonic development is disastrous, resulting in severe abnormalities. Several miRNAs have already been identified as modulators of lung development. Regarding the spatial distribution of the processing machinery of miRNAs, only two of its members (dicer1 and argonaute) have been characterized. The present work characterizes the expression pattern of drosha, dgcr8, exportin-5 and dicer1 in early stages of the embryonic chick lung by whole mount in situ hybridization and cross-section analysis. Overall, these genes are co-expressed in dorsal and distal mesenchyme and also in growing epithelial regions. The expression pattern of miRNA processing machinery supports the previously recognized regulatory role of this mechanism in epithelial and mesenchymal morphogenesis.QRE
    • …
    corecore