87 research outputs found

    Principais determinantes do preço do frete rodoviário para o transporte de soja em grãos em diferentes estados brasileiros: uma análise econométrica

    Get PDF
    The present study identifies the influence of a series of factors in order to determine operating freight rates for soybeans originally grown in the States of Goiás, Mato Grosso and Paraná, during the high seasons of 1998 to 2000 and low seasons of 1998/1999 to 2000/2001. From a multiple linear regression model, results have shown, in higher or lower degree, that the variables related to distance, number of tolls, unloading time at ports, seasonal demand for transport, quality conditions of the highways, influenced differently the rates of the freights in these states, during the periods of high and low seasons

    Sistema de vendas e CRM para empresas de esquadrias de alumínio

    Get PDF
    Acompanha CD-ROMOrientador: Alessandro BrawermanMonografia (graduação) - Universidade Federal do Paraná, Setor de Educação Profissional e Tecnológica, Curso de Tecnologia em Análise e Desenvolvimento de Sistemas

    Sistema de vendas e CRM para empresas de esquadrias de alumínio

    Get PDF
    Acompanha CD-ROMOrientador: Alessandro BrawermanMonografia (graduação) - Universidade Federal do Paraná, Setor de Educação Profissional e Tecnológica, Curso de Tecnologia em Análise e Desenvolvimento de Sistemas

    Avaliação da altura patelar em pacientes submetidos à técnica cirúrgica de osteotomia tibial de abertura medial: Assessment of patella height in patients submitted to the surgical technique of medial opening tibial osteotomy

    Get PDF
    Objetivo: Mensurar a variação da altura patelar em pacientes submetidos à osteotomia valgizante tibial proximal com técnica de cunha de abertura medial. Métodos: Foram analisadas radiografias de membros inferiores em perfil do joelho pré e pós-operatórias de 41 pacientes com artrose unicompartimental ou lesões ligamentares do joelho e desalinhamento em varo, em que se realizou osteotomia tibial. Resultados: A medição da altura pré-operatória foi de 1,09 e de 0,93 no pós operatório, com diminuição média de 0,16, através do método Caton-Deschamps, com significância estatística (0,0000312). Portanto a altura patelar pós operatória teve a tendência de diminuição, mesmo utilizando placas com batentes e placas bloqueadas sem batente. Conclusão: A altura patelar apresentou modificações quando mensuradas pelo método de Caton-Deschamps, constatou-se redução da altura patela

    Fluoxetine : an alternative in the treatment of major depression

    Get PDF
    Os autores apresentam uma revisão de literatura quanto ao uso de fluoxetina no tratamento da depressão maior. A fluoxetina é um inibidor seletivo da recaptação neuronal de serotonina na fenda sináptica, sendo tão eficaz quanto os antidepressivos tricíclicos nos quadros depressivos moderados e leves, porém com menores efeitos adversos, devido à mínima afinidade com outros receptores ali presentes. A posologia é de 20 mg diários, sendo que doses mais elevadas têm a mesma eficácia e maiores efeitos adversos, reservando-se aos casos não responsivos. Inúmeras investigações clínicas indicam que a fluoxetina é um antidepressivo bem tolerado, efetivo e seguro no tratamento da depressão maior.The authors present a review the literature concerning the use o f fluoxetine in the treatment o f major depression. Fluoxetine is one selective inhibiter o f the serotonine neuronal reuptake in the sinaptic cleft being so efficient as the tricyclic antidepressive in moderate to severe depressive conditions, but with /ess adverse efects due to a minimum affinity with other receptors presente there. The recomended dosage is 20mg daily and /arge doses have the same effectiveness with greater adverse effects beeing at reserved for monresponsive cases. Severa/ clinicai research demonstrate that fluoxetine is an effective safe and we/1 tolerated antidepressive in the treatment of major depression

    Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules

    Full text link
    [EN] Age-regulated microRNA156 (miR156) and targets similarly control the competence to flower in diverse species. By contrast, the diterpene hormone gibberellin (GA) and the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote flowering in the facultative long-day Arabidopsis thaliana, but suppress it in the day-neutral tomato (Solanum lycopersicum). We combined genetic and molecular studies and described a new interplay between GA and two unrelated miRNA-associated pathways that modulates tomato transition to flowering. Tomato PROCERA/DELLA activity is required to promote flowering along with the miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL/SBP) transcription factors by activating SINGLE FLOWER TRUSS (SFT) in the leaves and the MADS-Boxgene APETALA1(AP1)/MC at the shoot apex. Conversely, miR319-targeted LANCEOLATE represses floral transition by increasing GA concentrations and inactivating SFT in the leaves and AP1/MC at the shoot apex. Importantly, the combination of high GA concentrations/responses with the loss of SPL/SPB function impaired canonical meristem maturation and flower initiation in tomato. Our results reveal a cooperative regulation of tomato floral induction and flower development, integrating age cues (miR156 module) with GA responses and miR319-controlled pathways. Importantly, this study contributes to elucidate the mechanisms underlying the effects of GA in controlling flowering time in a day-neutral species.We thank Dr C. Schommer for kindly providing tcp4-soj8/+ seeds, and Carlos Rojas for Arabidopsis flowering time analyses. This work was supported by FAPESP (grant no. 15/17892-7 and fellowships nos 15/23826-7 and 13/16949-0). The authors declare no conflict of interest.Silva, G.; Silva, E.; Correa, J.; Vicente, M.; Jiang, N.; Notini, M.; Junior, A.... (2018). Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytologist. 221(3):1328-1344. https://doi.org/10.1111/nph.15492S132813442213Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291Bassel, G. W., Mullen, R. T., & Bewley, J. D. (2008). procerais a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. Journal of Experimental Botany, 59(3), 585-593. doi:10.1093/jxb/erm354Ben‐Naim, O., Eshed, R., Parnis, A., Teper‐Bamnolker, P., Shalit, A., Coupland, G., … Lifschitz, E. (2006). The CCAAT binding factor can mediate interactions between CONSTANS‐like proteins and DNA. The Plant Journal, 46(3), 462-476. doi:10.1111/j.1365-313x.2006.02706.xBoss, P. K., & Thomas, M. R. (2002). Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature, 416(6883), 847-850. doi:10.1038/416847aBurko, Y., Shleizer-Burko, S., Yanai, O., Shwartz, I., Zelnik, I. D., Jacob-Hirsch, J., … Ori, N. (2013). A Role for APETALA1/FRUITFULL Transcription Factors in Tomato Leaf Development. The Plant Cell, 25(6), 2070-2083. doi:10.1105/tpc.113.113035Cardon, G., Höhmann, S., Klein, J., Nettesheim, K., Saedler, H., & Huijser, P. (1999). Molecular characterisation of the Arabidopsis SBP-box genes. Gene, 237(1), 91-104. doi:10.1016/s0378-1119(99)00308-xCarrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A., & Garcia-Martinez, J. L. (2012). Characterization of the procera Tomato Mutant Shows Novel Functions of the SlDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development. Plant Physiology, 160(3), 1581-1596. doi:10.1104/pp.112.204552Carvalho, R. F., Campos, M. L., Pino, L. E., Crestana, S. L., Zsögön, A., Lima, J. E., … Peres, L. E. (2011). Convergence of developmental mutants into a single tomato model system: «Micro-Tom» as an effective toolkit for plant development research. Plant Methods, 7(1), 18. doi:10.1186/1746-4811-7-18Cubas, P., Lauter, N., Doebley, J., & Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18(2), 215-222. doi:10.1046/j.1365-313x.1999.00444.xDavière, J.-M., Wild, M., Regnault, T., Baumberger, N., Eisler, H., Genschik, P., & Achard, P. (2014). Class I TCP-DELLA Interactions in Inflorescence Shoot Apex Determine Plant Height. Current Biology, 24(16), 1923-1928. doi:10.1016/j.cub.2014.07.012Silva, G. F. F. e, Silva, E. M., da Silva Azevedo, M., Guivin, M. A. C., Ramiro, D. A., Figueiredo, C. R., … Nogueira, F. T. S. (2014). microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. The Plant Journal, 78(4), 604-618. doi:10.1111/tpj.12493Gallego-Bartolome, J., Minguet, E. G., Marin, J. A., Prat, S., Blazquez, M. A., & Alabadi, D. (2010). Transcriptional Diversification and Functional Conservation between DELLA Proteins in Arabidopsis. Molecular Biology and Evolution, 27(6), 1247-1256. doi:10.1093/molbev/msq012Gallego-Giraldo, L., García-Martínez, J. L., Moritz, T., & López-Díaz, I. (2007). Flowering in Tobacco Needs Gibberellins but is not Promoted by the Levels of Active GA1 and GA4 in the Apical Shoot. Plant and Cell Physiology, 48(4), 615-625. doi:10.1093/pcp/pcm034Galvao, V. C., Horrer, D., Kuttner, F., & Schmid, M. (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 139(21), 4072-4082. doi:10.1242/dev.080879García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229Gargul, J. M., Mibus, H., & Serek, M. (2013). Constitutive overexpression of Nicotiana GA 2 ox leads to compact phenotypes and delayed flowering in Kalanchoë blossfeldiana and Petunia hybrida. Plant Cell, Tissue and Organ Culture (PCTOC), 115(3), 407-418. doi:10.1007/s11240-013-0372-5Goldberg-Moeller, R., Shalom, L., Shlizerman, L., Samuels, S., Zur, N., Ophir, R., … Sadka, A. (2013). Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds. Plant Science, 198, 46-57. doi:10.1016/j.plantsci.2012.09.012Hauvermale, A. L., Ariizumi, T., & Steber, C. M. (2012). Gibberellin Signaling: A Theme and Variations on DELLA Repression. Plant Physiology, 160(1), 83-92. doi:10.1104/pp.112.200956Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., & Coupland, G. (2016). Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 37(3), 254-266. doi:10.1016/j.devcel.2016.04.001Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M., & Matsuoka, M. (2002). The Gibberellin Signaling Pathway Is Regulated by the Appearance and Disappearance of SLENDER RICE1 in Nuclei. The Plant Cell, 14(1), 57-70. doi:10.1105/tpc.010319Jung, J.-H., Ju, Y., Seo, P. J., Lee, J.-H., & Park, C.-M. (2011). The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant Journal, 69(4), 577-588. doi:10.1111/j.1365-313x.2011.04813.xKing, R. W., & Ben-Tal, Y. (2001). A Florigenic Effect of Sucrose in Fuchsia hybrida Is Blocked by Gibberellin-Induced Assimilate Competition. Plant Physiology, 125(1), 488-496. doi:10.1104/pp.125.1.488Kubota, A., Ito, S., Shim, J. S., Johnson, R. S., Song, Y. H., Breton, G., … Imaizumi, T. (2017). TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLOS Genetics, 13(6), e1006856. doi:10.1371/journal.pgen.1006856Kudla, J., & Bock, R. (2016). Lighting the Way to Protein-Protein Interactions: Recommendations on Best Practices for Bimolecular Fluorescence Complementation Analyses. The Plant Cell, 28(5), 1002-1008. doi:10.1105/tpc.16.00043Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., … Eshed, Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences, 103(16), 6398-6403. doi:10.1073/pnas.0601620103Liu, J., Cheng, X., Liu, P., Li, D., Chen, T., Gu, X., & Sun, J. (2017). MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. PLOS Genetics, 13(5), e1006833. doi:10.1371/journal.pgen.1006833Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Livne, S., Lor, V. S., Nir, I., Eliaz, N., Aharoni, A., Olszewski, N. E., … Weiss, D. (2015). Uncovering DELLA-Independent Gibberellin Responses by Characterizing New Tomato procera Mutants. The Plant Cell, 27(6), 1579-1594. doi:10.1105/tpc.114.132795Lombardi-Crestana, S., da Silva Azevedo, M., e Silva, G. F. F., Pino, L. E., Appezzato-da-Glória, B., Figueira, A., … Peres, L. E. P. (2012). The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots. Journal of Experimental Botany, 63(15), 5689-5703. doi:10.1093/jxb/ers221Lozano, R., Gimenez, E., Cara, B., Capel, J., & Angosto, T. (2009). Genetic analysis of reproductive development in tomato. The International Journal of Developmental Biology, 53(8-9-10), 1635-1648. doi:10.1387/ijdb.072440rlMartin, K., Kopperud, K., Chakrabarty, R., Banerjee, R., Brooks, R., & Goodin, M. M. (2009). Transient expression inNicotiana benthamianafluorescent marker lines provides enhanced definition of protein localization, movement and interactionsin planta. The Plant Journal, 59(1), 150-162. doi:10.1111/j.1365-313x.2009.03850.xMartínez-Bello, L., Moritz, T., & López-Díaz, I. (2015). Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants. Journal of Experimental Botany, 66(19), 5897-5910. doi:10.1093/jxb/erv300Meissner, R., Chague, V., Zhu, Q., Emmanuel, E., Elkind, Y., & Levy, A. A. (2000). A high throughput system for transposon tagging and promoter trapping in tomato. The Plant Journal, 22(3), 265-274. doi:10.1046/j.1365-313x.2000.00735.xMolinero-Rosales, N., Jamilena, M., Zurita, S., Gomez, P., Capel, J., & Lozano, R. (1999). FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. The Plant Journal, 20(6), 685-693. doi:10.1046/j.1365-313x.1999.00641.xMorea, E. G. O., da Silva, E. M., e Silva, G. F. F., Valente, G. T., Barrera Rojas, C. H., Vincentz, M., & Nogueira, F. T. S. (2016). Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0716-5Mounet, F., Moing, A., Garcia, V., Petit, J., Maucourt, M., Deborde, C., … Lemaire-Chamley, M. (2009). Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development. Plant Physiology, 149(3), 1505-1528. doi:10.1104/pp.108.133967Nir, I., Shohat, H., Panizel, I., Olszewski, N., Aharoni, A., & Weiss, D. (2017). The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure. The Plant Cell, 29(12), 3186-3197. doi:10.1105/tpc.17.00542Ohad, N., Shichrur, K., & Yalovsky, S. (2007). The Analysis of Protein-Protein Interactions in Plants by Bimolecular Fluorescence Complementation. Plant Physiology, 145(4), 1090-1099. doi:10.1104/pp.107.107284Ori, N., Cohen, A. R., Etzioni, A., Brand, A., Yanai, O., Shleizer, S., … Eshed, Y. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 39(6), 787-791. doi:10.1038/ng2036Pal, S., Zhao, J., Khan, A., Yadav, N. S., Batushansky, A., Barak, S., … Rachmilevitch, S. (2016). Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports, 6(1). doi:10.1038/srep39321Palatnik, J. F., Wollmann, H., Schommer, C., Schwab, R., Boisbouvier, J., Rodriguez, R., … Weigel, D. (2007). Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Developmental Cell, 13(1), 115-125. doi:10.1016/j.devcel.2007.04.012Parapunova, V., Busscher, M., Busscher-Lange, J., Lammers, M., Karlova, R., Bovy, A. G., … de Maagd, R. A. (2014). Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology, 14(1), 157. doi:10.1186/1471-2229-14-157Park, S. J., Jiang, K., Schatz, M. C., & Lippman, Z. B. (2011). Rate of meristem maturation determines inflorescence architecture in tomato. Proceedings of the National Academy of Sciences, 109(2), 639-644. doi:10.1073/pnas.1114963109Pharis, R. P., & King, R. W. (1985). Gibberellins and Reproductive Development in Seed Plants. Annual Review of Plant Physiology, 36(1), 517-568. doi:10.1146/annurev.pp.36.060185.002505Porri, A., Torti, S., Romera-Branchat, M., & Coupland, G. (2012). Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 139(12), 2198-2209. doi:10.1242/dev.077164Preston, J. C., & Hileman, L. C. (2013). Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00080Reinecke, D. M., Wickramarathna, A. D., Ozga, J. A., Kurepin, L. V., Jin, A. L., Good, A. G., & Pharis, R. P. (2013). Gibberellin 3-oxidase Gene Expression Patterns Influence Gibberellin Biosynthesis, Growth, and Development in Pea. PLANT PHYSIOLOGY, 163(2), 929-945. doi:10.1104/pp.113.225987Rubio-Somoza, I., & Weigel, D. (2011). MicroRNA networks and developmental plasticity in plants. Trends in Plant Science, 16(5), 258-264. doi:10.1016/j.tplants.2011.03.001Rubio-Somoza, I., Zhou, C.-M., Confraria, A., Martinho, C., von Born, P., Baena-Gonzalez, E., … Weigel, D. (2014). Temporal Control of Leaf Complexity by miRNA-Regulated Licensing of Protein Complexes. Current Biology, 24(22), 2714-2719. doi:10.1016/j.cub.2014.09.058Salinas, M., Xing, S., Höhmann, S., Berndtgen, R., & Huijser, P. (2011). Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta, 235(6), 1171-1184. doi:10.1007/s00425-011-1565-ySarvepalli, K., & Nath, U. (2011). Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. The Plant Journal, 67(4), 595-607. doi:10.1111/j.1365-313x.2011.04616.xSerrano-Mislata, A., Bencivenga, S., Bush, M., Schiessl, K., Boden, S., & Sablowski, R. (2017). DELLA genes restrict inflorescence meristem function independently of plant height. Nature Plants, 3(9), 749-754. doi:10.1038/s41477-017-0003-yShikata, M., & Ezura, H. (2016). Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation. Methods in Molecular Biology, 47-55. doi:10.1007/978-1-4939-3115-6_5Stettler, R. F. (1964). DOSAGE EFFECTS OF THE LANCEOLATE GENE IN TOMATO. American Journal of Botany, 51(3), 253-264. doi:10.1002/j.1537-2197.1964.tb06628.xVarkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3(1), 12. doi:10.1186/1746-4811-3-12Vendemiatti, E., Zsögön, A., Silva, G. F. F. e, de Jesus, F. A., Cutri, L., Figueiredo, C. R. F., … Peres, L. E. P. (2017). Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Science, 259, 35-47. doi:10.1016/j.plantsci.2017.03.006Vicente, M. H., Zsögön, A., de Sá, A. F. L., Ribeiro, R. V., & Peres, L. E. P. (2015). Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato ( Solanum lycopersicum ). Journal of Plant Physiology, 177, 11-19. doi:10.1016/j.jplph.2015.01.003Wang, J.-W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell, 138(4), 738-749. doi:10.1016/j.cell.2009.06.014Wilkie, J. D., Sedgley, M., & Olesen, T. (2008). Regulation of floral initiation in horticultural trees. Journal of Experimental Botany, 59(12), 3215-3228. doi:10.1093/jxb/ern188Yamaguchi, A., Wu, M.-F., Yang, L., Wu, G., Poethig, R. S., & Wagner, D. (2009). The MicroRNA-Regulated SBP-Box Transcription Factor SPL3 Is a Direct Upstream Activator of LEAFY, FRUITFULL, and APETALA1. Developmental Cell, 17(2), 268-278. doi:10.1016/j.devcel.2009.06.007Yamaguchi, N., Winter, C. M., Wu, M.-F., Kanno, Y., Yamaguchi, A., Seo, M., & Wagner, D. (2014). Gibberellin Acts Positively Then Negatively to Control Onset of Flower Formation in Arabidopsis. Science, 344(6184), 638-641. doi:10.1126/science.1250498Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. doi:10.1146/annurev.arplant.59.032607.092804Yamamoto, A., Nakamura, T., Adu-Gyamfi, J. J., & Saigusa, M. (2002). RELATIONSHIP BETWEEN CHLOROPHYLL CONTENT IN LEAVES OF SORGHUM AND PIGEONPEA DETERMINED BY EXTRACTION METHOD AND BY CHLOROPHYLL METER (SPAD-502). Journal of Plant Nutrition, 25(10), 2295-2301. doi:10.1081/pln-120014076Yanai, O., Shani, E., Russ, D., & Ori, N. (2011). Gibberellin partly mediates LANCEOLATE activity in tomato. The Plant Journal, 68(4), 571-582. doi:10.1111/j.1365-313x.2011.04716.xYu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014Yuste-Lisbona, F. J., Quinet, M., Fernández-Lozano, A., Pineda, B., Moreno, V., Angosto, T., & Lozano, R. (2016). Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports, 6(1). doi:10.1038/srep18796Zhang, S., Zhang, D., Fan, S., Du, L., Shen, Y., Xing, L., … Han, M. (2016). Effect of exogenous GA 3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’ apple ( Malus domestica Borkh.). Plant Physiology and Biochemistry, 107, 178-186. doi:10.1016/j.plaphy.2016.06.005Zhang, X., Zou, Z., Zhang, J., Zhang, Y., Han, Q., Hu, T., … Ye, Z. (2010). Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Letters, 585(2), 435-439. doi:10.1016/j.febslet.2010.12.03

    Self-reported adherence to physical activity recommendations compared to the IPAQ interview in patients with hypertension

    Get PDF
    Background: Physical activity (PA) is recommended as adjuvant therapy to control blood pressure (BP). The effectiveness of simple recommendations is not clear. We aimed to assess the agreement between self-report of adherence to PA in clinical routine and International Physical Activity Questionnaire (IPAQ) interview and its association with BP control. Methods: A cross-sectional study was conducted with hypertensive outpatients. Adherence to recommendation to PA was assessed by the physician and IPAQ interview. A cutoff of 150 minutes/week was used to classify active or nonactive patients. High sitting time was considered >4 hours/day. A total of 127 individuals (SBP 144.9±24.4 mmHg/DBP 82.0±12.8 mmHg) were included. Results: A total of 69 subjects (54.3%) reported to be active to their physician, whereas 81 (63.8%) were classified as active by IPAQ (6.3% active in leisure time PA). Kappa test was 0.22 (95% CI, 0.06–0.37). The rate of BP control was 45.7%. There was no association with the reported PA assessed by both methods nor with sitting time. Our results demonstrated poor agreement between self-report adherence and IPAQ interview, and neither evaluation was associated with BP control. Conclusion: Our findings underpin evidences that a simple PA recommendation has low association with BP control in clinical settings

    Influence of the expression of inflammatory markers on kidney after fetal programming in an experimental model of renal failure

    Get PDF
    Objective. To evaluate the expression of inflammatory markers in experimental renal failure after fetal programming. Methods. The offspring aged two and fivemonths were divided into four groups: CC (control dams, control offspring)DC (diabetic dams, control offspring)CFA (control dams, folic acid offspring, 250 mg/Kg)and DFA (diabetic dams, folic acid offspring). Gene expression of inflammatory markersMCP-1, IL-1, NOS3, TGF-beta, TNF-alpha, and VEGF was evaluated by RT-PCR. Results. MCP-1 was increased in the CFA and DFA groups at two and fivemonths of age, as well as in DC5 when compared to CC5. There was a higher expression of IL-1 in the CFA2, DFA2, and DC2 groups. There was a decrease in NOS3 and an increase in TNF-alpha in DFA5 in relation to CFA5. The gene expression of TGF-beta increased in cases that had received folic acid at two and five months, and VEGF decreased in the CFA5 and DFA5 groups. DC5 showed increased VEGF expression in comparison with CC5. Conclusions. Gestational diabetes mellitus and folic acid both change the expression of inflammatory markers, thus demonstrating that the exposure to harmful agents in adulthood has a more severe impact in cases which underwent fetal reprogramming.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG)Fundacao de Ensino e Pesquisa de Uberaba (FUNEPU)Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, BrazilDepartment of Health Sciences, Lavras Federal University, Lavras, MG, BrazilDiscipline of Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, BrazilNephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, SP, BrazilDepartment of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, SP, BrazilDepartment of General Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, BrazilNephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, SP, BrazilWeb of Scienc
    corecore