496 research outputs found

    Efficient and multiplierless design of FIR filters with very sharp cutoff via maximally flat building blocks

    Get PDF
    A new design technique for linear-phase FIR filters, based on maximally flat buildiing blocks, is presented. The design technique does not involve iterative approximations and is, therefore, fast. It gives rise to filters that have a monotone stopband response, as required in some applications. The technique is partially based on an interpolative scheme. Implementation of the obtained filter designs requires a much smaller number of multiplications than maximally flat (MAXFLAT) FIR filters designed by the conventional approach. A technique based on FIR spectral transformations to design new multiplierless FIR filter structures is then advanced, and multiplierless implementations for sharp cutoff specifications are included

    Sophisticated sperm allocation in male fowl

    Get PDF
    When a female is sexually promiscuous, the ejaculates of different males compete for the fertilization of her eggs; the more sperm a male inseminates into a female, the more likely he is to fertilize her eggs. Because sperm production is limited and costly, theory predicts that males will strategically allocate sperm (1) according to female promiscuity, (2) saving some for copulations with new females, and (3) to females producing more and/or better offspring. Whether males allocate sperm in all of these ways is not known, particularly in birds where the collection of natural ejaculates only recently became possible. Here we demonstrate male sperm allocation of unprecedented sophistication in the fowl Gallus gallus. Males show status-dependent sperm investment in females according to the level of female promiscuity; they progressively reduce sperm investment in a particular female but, on encountering a new female, instantaneously increase their sperm investment; and they preferentially allocate sperm to females with large sexual ornaments signalling superior maternal investment. Our results indicate that female promiscuity leads to the evolution of sophisticated male sexual behaviour

    Sophisticated sperm allocation in male fowl

    Get PDF
    When a female is sexually promiscuous, the ejaculates of different males compete for the fertilization of her eggs; the more sperm a male inseminates into a female, the more likely he is to fertilize her eggs. Because sperm production is limited and costly, theory predicts that males will strategically allocate sperm (1) according to female promiscuity, (2) saving some for copulations with new females, and (3) to females producing more and/or better offspring. Whether males allocate sperm in all of these ways is not known, particularly in birds where the collection of natural ejaculates only recently became possible. Here we demonstrate male sperm allocation of unprecedented sophistication in the fowl Gallus gallus. Males show status-dependent sperm investment in females according to the level of female promiscuity; they progressively reduce sperm investment in a particular female but, on encountering a new female, instantaneously increase their sperm investment; and they preferentially allocate sperm to females with large sexual ornaments signalling superior maternal investment. Our results indicate that female promiscuity leads to the evolution of sophisticated male sexual behaviour

    日本への二つの旅行,1856-7;第2巻

    Get PDF

    日本への二つの旅行,1856-7;第1巻

    Get PDF

    Growth rate, transmission mode and virulence in human pathogens.

    Get PDF
    The harm that pathogens cause to hosts during infection, termed virulence, varies across species from negligible to a high likelihood of rapid death. Classic theory for the evolution of virulence is based on a trade-off between pathogen growth, transmission and host survival, which predicts that higher within-host growth causes increased transmission and higher virulence. However, using data from 61 human pathogens, we found the opposite correlation to the expected positive correlation between pathogen growth rate and virulence. We found that (i) slower growing pathogens are significantly more virulent than faster growing pathogens, (ii) inhaled pathogens and pathogens that infect via skin wounds are significantly more virulent than pathogens that are ingested, but (iii) there is no correlation between symptoms of infection that aid transmission (such as diarrhoea and coughing) and virulence. Overall, our results emphasize how virulence can be influenced by mechanistic life-history details, especially transmission mode, that determine how parasites infect and exploit their hosts.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'

    Symbioses shape feeding niches and diversification across insects.

    Get PDF
    For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded

    Evolutionary associations between host traits and parasite load: insights from Lake Tanganyika cichlids

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Parasite diversity and abundance (parasite load) vary greatly among host species. However, the influence of host traits on variation in parasitism remains poorly understood. Comparative studies of parasite load have largely examined measures of parasite species richness, and are predominantly based on records obtained from published data. Consequently, little is known about the relationships between host traits and other aspects of parasite load, such as parasite abundance, prevalence, and aggregation. Meanwhile, understanding of parasite species richness may be clouded by limitations associated with data collation from multiple independent sources. We conducted a field study of Lake Tanganyika cichlid fishes and their helminth parasites. Using a Bayesian phylogenetic comparative framework, we tested evolutionary associations between five key host traits (body size, gut length, diet breadth, habitat complexity, number of sympatric hosts) predicted to influence parasitism, together with multiple measures of parasite load. We find that the number of host species that a particular host may encounter due to its habitat preferences emerges as a factor of general importance for parasite diversity, abundance, and prevalence, but not parasite aggregation. In contrast, body size and gut size are positively related to aspects of parasite load within, but not between species. The influence of host phylogeny varies considerably among measures of parasite load, with the greatest influence exerted on parasite diversity. These results reveal that both host morphology and biotic interactions are key determinants of host-parasite associations, and that consideration of multiple aspects of parasite load is required to fully understand patterns in parasitism

    The epidemiology underlying age-related avian malaria infection in a long-lived host: the mute swan Cygnus olor

    Get PDF
    Quantifying the factors that predict parasite outbreak and persistence is a major challenge for both applied and fundamental biology. Key to understanding parasite prevalence and disease outbreaks is determining at what age individuals show signs of infection, and whether or not they recover. Age-dependent patterns of the infection of a host population by parasites can indicate among-individual heterogeneities in their susceptibility to, or rate of recovery from, parasite infections. Here, we present a cross-sectional study of avian malaria in a long-lived bird species, the mute swan Cygnus olor, examining age-related patterns of parasite prevalence and modelling patterns of infection and recovery. One-hundred and fifteen swans, ranging from one to nineteen years old, were screened for infection with Plasmodium, Haemoproteus and Leucocytozoon parasites. Infections with three cytochrome-b lineages of Haemoproteus were found (pooled prevalence 67%), namely WW1 (26%), which is common in passerine birds, and two new lineages closely related to WW1: MUTSW1 (25%) and MUTSW2 (16%). We found evidence for age-related infection in one lineage, MUTSW1. Catalytic models examining patterns of infection and recovery in the population suggested that infections in this population were not life-long – recovery of individuals was included in the best fitting models. These findings support the results of recent studies that suggest hosts can clear infections, although patterns of infection-related mortality in older birds remain to be studied in more detail
    corecore