2,870 research outputs found

    On One-Loop Gap Equations for the Magnetic Mass in d=3 Gauge Theory

    Get PDF
    Recently several workers have attempted determinations of the so-called magnetic mass of d=3 non-Abelian gauge theories through a one-loop gap equation, using a free massive propagator as input. Self-consistency is attained only on-shell, because the usual Feynman-graph construction is gauge-dependent off-shell. We examine two previous studies of the pinch technique proper self-energy, which is gauge-invariant at all momenta, using a free propagator as input, and show that it leads to inconsistent and unphysical result. In one case the residue of the pole has the wrong sign (necessarily implying the presence of a tachyonic pole); in the second case the residue is positive, but two orders of magnitude larger than the input residue, which shows that the residue is on the verge of becoming ghostlike. This happens because of the infrared instability of d=3 gauge theory. A possible alternative one-loop determination via the effective action also fails. The lesson is that gap equations must be considered at least at two-loop level.Comment: 21 pages, LaTex, 2 .eps figure

    Center Vortices, Nexuses, and the Georgi-Glashow Model

    Get PDF
    In a gauge theory with no Higgs fields the mechanism for confinement is by center vortices, but in theories with adjoint Higgs fields and generic symmetry breaking, such as the Georgi-Glashow model, Polyakov showed that in d=3 confinement arises via a condensate of 't Hooft-Polyakov monopoles. We study the connection in d=3 between pure-gauge theory and the theory with adjoint Higgs by varying the Higgs VEV v. As one lowers v from the Polyakov semi- classical regime v>>g (g is the gauge coupling) toward zero, where the unbroken theory lies, one encounters effects associated with the unbroken theory at a finite value v\sim g, where dynamical mass generation of a gauge-symmetric gauge- boson mass m\sim g^2 takes place, in addition to the Higgs-generated non-symmetric mass M\sim vg. This dynamical mass generation is forced by the infrared instability (in both 3 and 4 dimensions) of the pure-gauge theory. We construct solitonic configurations of the theory with both m,M non-zero which are generically closed loops consisting of nexuses (a class of soliton recently studied for the pure-gauge theory), each paired with an antinexus, sitting like beads on a string of center vortices with vortex fields always pointing into (out of) a nexus (antinexus); the vortex magnetic fields extend a transverse distance 1/m. An isolated nexus with vortices is continuously deformable from the 't Hooft-Polyakov (m=0) monopole to the pure-gauge nexus-vortex complex (M=0). In the pure-gauge M=0 limit the homotopy Π2(SU(2)/U(1))=Z2\Pi_2(SU(2)/U(1))=Z_2 (or its analog for SU(N)) of the 't Hooft monopoles is no longer applicable, and is replaced by the center-vortex homotopy Π1(SU)N)/ZN)=ZN\Pi_1(SU)N)/Z_N)=Z_N.Comment: 27 pages, LaTeX, 3 .eps figure

    On dynamical gluon mass generation

    Get PDF
    The effective gluon propagator constructed with the pinch technique is governed by a Schwinger-Dyson equation with special structure and gauge properties, that can be deduced from the correspondence with the background field method. Most importantly the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions, a property which allows for a meanigfull truncation. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles. The resulting integral equation, subject to a properly regularized constraint, is solved numerically, and the main features of the solutions are briefly discussed.Comment: Special Article - QNP2006: 4th International Conference on Quarks and Nuclear Physics, Madrid, Spain, 5-10 June 200

    Center Vortices, Nexuses, and Fractional Topological Charge

    Get PDF
    It has been remarked in several previous works that the combination of center vortices and nexuses (a nexus is a monopole-like soliton whose world line mediates certain allowed changes of field strengths on vortex surfaces) carry topological charge quantized in units of 1/N for gauge group SU(N). These fractional charges arise from the interpretation of the standard topological charge integral as a sum of (integral) intersection numbers weighted by certain (fractional) traces. We show that without nexuses the sum of intersection numbers gives vanishing topological charge (since vortex surfaces are closed and compact). With nexuses living as world lines on vortices, the contributions to the total intersection number are weighted by different trace factors, and yield a picture of the total topological charge as a linking of a closed nexus world line with a vortex surface; this linking gives rise to a non-vanishing but integral topological charge. This reflects the standard 2\pi periodicity of the theta angle. We argue that the Witten-Veneziano relation, naively violating 2\pi periodicity, scales properly with N at large N without requiring 2\pi N periodicity. This reflects the underlying composition of localized fractional topological charge, which are in general widely separated. Some simple models are given of this behavior. Nexuses lead to non-standard vortex surfaces for all SU(N) and to surfaces which are not manifolds for N>2. We generalize previously-introduced nexuses to all SU(N) in terms of a set of fundamental nexuses, which can be distorted into a configuration resembling the 't Hooft-Polyakov monopole with no strings. The existence of localized but widely-separated fractional topological charges, adding to integers only on long distance scales, has implications for chiral symmetry breakdown.Comment: 15 pages, revtex, 6 .eps figure

    Electroweak Sudakov logarithms in the Coulomb gauge

    Get PDF
    We describe a formalism for calculating electroweak Sudakov logarithms in the Coulomb gauge. This formalism is applicable to arbitrary electroweak processes. For illustration we focus on the specific reactions e^+e^- -> f \bar{f} and e^+e^- -> W_T^+W_T^-, W_L^+W_L^-, which contain all the salient details of dealing with the various types of particles. We discuss an explicit two-loop calculation and have a critical look at the (non-)exponentiation and factorisation properties of the Sudakov logarithms in the Standard Model.Comment: 6 pages, LaTeX, uses npb.sty. Talk given at the 5th Zeuthen Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory, Koenigstein-Weissig, Germany, 9-14 Apr 200

    On the connection between the pinch technique and the background field method

    Full text link
    The connection between the pinch technique and the background field method is further explored. We show by explicit calculations that the application of the pinch technique in the framework of the background field method gives rise to exactly the same results as in the linear renormalizable gauges. The general method for extending the pinch technique to the case of Green's functions with off-shell fermions as incoming particles is presented. As an example, the one-loop gauge independent quark self-energy is constructed. We briefly discuss the possibility that the gluonic Green's functions, obtained by either method, correspond to physical quantities.Comment: 13 pages and 3 figures, all included in a uuencoded file, to appear in Physical Review

    Fixed points and vacuum energy of dynamically broken gauge theories

    Get PDF
    We show that if a gauge theory with dynamical symmetry breaking has non-trivial fixed points, they will correspond to extrema of the vacuum energy. This relationship provides a different method to determine fixed points.Comment: 17 pages, uuencoded latex file, 3 figures, uses epsf and epsfig. Submitted to Mod. Phys. Lett.

    Baryon number non-conservation and phase transitions at preheating

    Get PDF
    Certain inflation models undergo pre-heating, in which inflaton oscillations can drive parametric resonance instabilities. We discuss several phenomena stemming from such instabilities, especially in weak-scale models; generically, these involve energizing a resonant system so that it can evade tunneling by crossing barriers classically. One possibility is a spontaneous change of phase from a lower-energy vacuum state to one of higher energy, as exemplified by an asymmetric double-well potential with different masses in each well. If the lower well is in resonance with oscillations of the potential, a system can be driven resonantly to the upper well and stay there (except for tunneling) if the upper well is not resonant. Another example occurs in hybrid inflation models where the Higgs field is resonant; the Higgs oscillations can be transferred to electroweak (EW) gauge potentials, leading to rapid transitions over sphaleron barriers and consequent B+L violation. Given an appropriate CP-violating seed, we find that preheating can drive a time-varying condensate of Chern-Simons number over large spatial scales; this condensate evolves by oscillation as well as decay into modes with shorter spatial gradients, eventually ending up as a condensate of sphalerons. We study these examples numerically and to some extent analytically. The emphasis in the present paper is on the generic mechanisms, and not on specific preheating models; these will be discussed in a later paper.Comment: 10 pages, 7 figures included, revtex, epsf, references adde

    On The Phase Transition in D=3 Yang-Mills Chern-Simons Gauge Theory

    Get PDF
    SU(N)SU(N) Yang-Mills theory in three dimensions, with a Chern-Simons term of level kk (an integer) added, has two dimensionful coupling constants, g2kg^2 k and g2Ng^2 N; its possible phases depend on the size of kk relative to NN. For kNk \gg N, this theory approaches topological Chern-Simons theory with no Yang-Mills term, and expectation values of multiple Wilson loops yield Jones polynomials, as Witten has shown; it can be treated semiclassically. For k=0k=0, the theory is badly infrared singular in perturbation theory, a non-perturbative mass and subsequent quantum solitons are generated, and Wilson loops show an area law. We argue that there is a phase transition between these two behaviors at a critical value of kk, called kck_c, with kc/N2±.7k_c/N \approx 2 \pm .7. Three lines of evidence are given: First, a gauge-invariant one-loop calculation shows that the perturbative theory has tachyonic problems if k29N/12k \leq 29N/12.The theory becomes sensible only if there is an additional dynamic source of gauge-boson mass, just as in the k=0k=0 case. Second, we study in a rough approximation the free energy and show that for kkck \leq k_c there is a non-trivial vacuum condensate driven by soliton entropy and driving a gauge-boson dynamical mass MM, while both the condensate and MM vanish for kkck \geq k_c. Third, we study possible quantum solitons stemming from an effective action having both a Chern-Simons mass mm and a (gauge-invariant) dynamical mass MM. We show that if M \gsim 0.5 m, there are finite-action quantum sphalerons, while none survive in the classical limit M=0M=0, as shown earlier by D'Hoker and Vinet. There are also quantum topological vortices smoothly vanishing as M0M \rightarrow 0.Comment: 36 pages, latex, two .eps and three .ps figures in a gzipped uuencoded fil

    Relativistic center-vortex dynamics of a confining area law

    Full text link
    We offer a physicists' proof that center-vortex theory requires the area in the Wilson-loop area law to involve an extremal area. Area-law dynamics is determined by integrating over Wilson loops only, not over surface fluctuations for a fixed loop. Fluctuations leading to to perimeter-law corrections come from loop fluctuations as well as integration over finite -thickness center-vortex collective coordinates. In d=3 (or d=2+1) we exploit a contour form of the extremal area in isothermal which is similar to d=2 (or d=1+1) QCD in many respects, except that there are both quartic and quadratic terms in the action. One major result is that at large angular momentum \ell in d=3+1 the center-vortex extremal-area picture yields a linear Regge trajectory with Regge slope--string tension product \alpha'(0)K_F of 1/(2\pi), which is the canonical Veneziano/string value. In a curious effect traceable to retardation, the quark kinetic terms in the action vanish relative to area-law terms in the large-\ell limit, in which light-quark masses \sim K_F^{1/2} are negligible. This corresponds to string-theoretic expectations, even though we emphasize that the extremal-area law is not a string theory quantum-mechanically. We show how some quantum trajectory fluctuations as well as non-leading classical terms for finite mass yield corrections scaling with \ell^{-1/2}. We compare to old semiclassical calculations of relativistic q\bar{q} bound states at large \ell, which also yield asymptotically-linear Regge trajectories, finding agreement with a naive string picture (classically, not quantum-mechanically) and disagreement with an effective-propagator model. We show that contour forms of the area law can be expressed in terms of Abelian gauge potentials, and relate this to old work of Comtet.Comment: 20 pages RevTeX4 with 3 .eps figure
    corecore