Certain inflation models undergo pre-heating, in which inflaton oscillations
can drive parametric resonance instabilities. We discuss several phenomena
stemming from such instabilities, especially in weak-scale models; generically,
these involve energizing a resonant system so that it can evade tunneling by
crossing barriers classically. One possibility is a spontaneous change of phase
from a lower-energy vacuum state to one of higher energy, as exemplified by an
asymmetric double-well potential with different masses in each well. If the
lower well is in resonance with oscillations of the potential, a system can be
driven resonantly to the upper well and stay there (except for tunneling) if
the upper well is not resonant. Another example occurs in hybrid inflation
models where the Higgs field is resonant; the Higgs oscillations can be
transferred to electroweak (EW) gauge potentials, leading to rapid transitions
over sphaleron barriers and consequent B+L violation. Given an appropriate
CP-violating seed, we find that preheating can drive a time-varying condensate
of Chern-Simons number over large spatial scales; this condensate evolves by
oscillation as well as decay into modes with shorter spatial gradients,
eventually ending up as a condensate of sphalerons. We study these examples
numerically and to some extent analytically. The emphasis in the present paper
is on the generic mechanisms, and not on specific preheating models; these will
be discussed in a later paper.Comment: 10 pages, 7 figures included, revtex, epsf, references adde