327 research outputs found

    The meaning of life in a developing universe

    Get PDF
    The evolution of life on Earth has produced an organism that is beginning to model and understand its own evolution and the possible future evolution of life in the universe. These models and associated evidence show that evolution on Earth has a trajectory. The scale over which living processes are organized cooperatively has increased progressively, as has its evolvability. Recent theoretical advances raise the possibility that this trajectory is itself part of a wider developmental process. According to these theories, the developmental process has been shaped by a larger evolutionary process that involves the reproduction of universes. This evolutionary process has tuned the key parameters of the universe to increase the likelihood that life will emerge and develop to produce outcomes that are successful in the larger process (e.g. a key outcome may be to produce life and intelligence that intentionally reproduces the universe and tunes the parameters of ‘offspring’ universes). Theory suggests that when life emerges on a planet, it moves along this trajectory of its own accord. However, at a particular point evolution will continue to advance only if organisms emerge that decide to advance the evolutionary process intentionally. The organisms must be prepared to make this commitment even though the ultimate nature and destination of the process is uncertain, and may forever remain unknown. Organisms that complete this transition to intentional evolution will drive the further development of life and intelligence in the universe. Humanity’s increasing understanding of the evolution of life in the universe is rapidly bringing it to the threshold of this major evolutionary transition

    Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism

    Get PDF
    Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio

    The impact of interaction models on the coherence of collective decision-making : a case study with simulated locusts

    Get PDF
    A key aspect of collective systems resides in their ability to exhibit coherent behaviors, which demonstrate the system as a single unit. Such coherence is assumed to be robust under local interactions and high density of individuals. In this paper, we go beyond the local interactions and we investigate the coherence degree of a collective decision under different interaction models: (i)Â how this degree may get violated by massive loss of interaction links or high levels of individual noise, and (ii)Â how efficient each interaction model is in restoring a high degree of coherence. Our findings reveal that some of the interaction models facilitate a significant recovery of the coherence degree because their specific inter-connecting mechanisms lead to a better inference of the swarm opinion. Our results are validated using physics-based simulations of a locust robotic swarm

    A meta-analytic review of stand-alone interventions to improve body image

    Get PDF
    Objective Numerous stand-alone interventions to improve body image have been developed. The present review used meta-analysis to estimate the effectiveness of such interventions, and to identify the specific change techniques that lead to improvement in body image. Methods The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on improving body image), (b) a control group was used, (c) participants were randomly assigned to conditions, and (d) at least one pretest and one posttest measure of body image was taken. Effect sizes were meta-analysed and moderator analyses were conducted. A taxonomy of 48 change techniques used in interventions targeted at body image was developed; all interventions were coded using this taxonomy. Results The literature search identified 62 tests of interventions (N = 3,846). Interventions produced a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies (d+ = -0.72). However, the effect size for body image was inflated by bias both within and across studies, and was reliable but of small magnitude once corrections for bias were applied. Effect sizes for the other outcomes were no longer reliable once corrections for bias were applied. Several features of the sample, intervention, and methodology moderated intervention effects. Twelve change techniques were associated with improvements in body image, and three techniques were contra-indicated. Conclusions The findings show that interventions engender only small improvements in body image, and underline the need for large-scale, high-quality trials in this area. The review identifies effective techniques that could be deployed in future interventions

    Improved search for invisible modes of nucleon decay in water with the SNO+ detector

    Get PDF
    This paper reports results from a search for single and multi-nucleon disappearance from the 16^{16}O nucleus in water within the \snoplus{} detector using all of the available data. These so-called "invisible" decays do not directly deposit energy within the detector but are instead detected through their subsequent nuclear de-excitation and gamma-ray emission. New limits are given for the partial lifetimes: τ(ninv)>9.0×1029\tau(n\rightarrow inv) > 9.0\times10^{29} years, τ(pinv)>9.6×1029\tau(p\rightarrow inv) > 9.6\times10^{29} years, τ(nninv)>1.5×1028\tau(nn\rightarrow inv) > 1.5\times10^{28} years, τ(npinv)>6.0×1028\tau(np\rightarrow inv) > 6.0\times10^{28} years, and τ(ppinv)>1.1×1029\tau(pp\rightarrow inv) > 1.1\times10^{29} years at 90\% Bayesian credibility level (with a prior uniform in rate). All but the (nninvnn\rightarrow inv) results improve on existing limits by a factor of about 3.info:eu-repo/semantics/publishedVersio

    Observation of Antineutrinos from Distant Reactors using Pure Water at SNO+

    Full text link
    The SNO+ collaboration reports the first observation of reactor antineutrinos in a Cherenkov detector. The nearest nuclear reactors are located 240 km away in Ontario, Canada. This analysis used events with energies lower than in any previous analysis with a large water Cherenkov detector. Two analytical methods were used to distinguish reactor antineutrinos from background events in 190 days of data and yielded consistent observations of antineutrinos with a combined significance of 3.5 σ\sigma.Comment: v2: add missing author, add link to supplemental materia

    Evidence of antineutrinos from distant reactors using pure water at SNO

    Get PDF
    The SNO+ Collaboration reports the first evidence of reactor antineutrinos in a Cherenkov detector. The nearest nuclear reactors are located 240 km away in Ontario, Canada. This analysis uses events with energies lower than in any previous analysis with a large water Cherenkov detector. Two analytical methods are used to distinguish reactor antineutrinos from background events in 190 days of data and yield consistent evidence for antineutrinos with a combined significance of 3.5σ

    Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector

    Get PDF
    DEAP-3600 is a single-phase liquid argon detector aiming to directly detect Weakly Interacting Massive Particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon spin-independent, isoscalar cross section. This study reinterprets this result within a Non-Relativistic Effective Field Theory framework, and further examines how various possible substructures in the local dark matter halo may affect these constraints. Such substructures are hinted at by kinematic structures in the local stellar distribution observed by the Gaia satellite and other recent astronomical surveys. These include the Gaia Sausage (or Enceladus), as well as a number of distinct streams identified in recent studies. Limits are presented for the coupling strength of the effective contact interaction operators O1\mathcal{O}_1, O3\mathcal{O}_3, O5\mathcal{O}_5, O8\mathcal{O}_8, and O11\mathcal{O}_{11}, considering isoscalar, isovector, and xenonphobic scenarios, as well as the specific operators corresponding to millicharge, magnetic dipole, electric dipole, and anapole interactions. The effects of halo substructures on each of these operators are explored as well, showing that the O5\mathcal{O}_5 and O8\mathcal{O}_8 operators are particularly sensitive to the velocity distribution, even at dark matter masses above 100 GeV/c2c^2
    corecore