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A key aspect of collective systems resides in their ability to exhibit coherent
behaviors, which demonstrate the system as a single unit. Such coherence is
assumed to be robust under local interactions and high density of individuals. In
this paper, we go beyond the local interactions and we investigate the coherence
degree of a collective decision under different interaction models: (i) how this
degree may get violated by massive loss of interaction links or high levels of
individual noise, and (ii) how efficient each interaction model is in restoring
a high degree of coherence. Our findings reveal that some of the interaction
models facilitate a significant recovery of the coherence degree because their
specific inter-connecting mechanisms lead to a better inference of the swarm
opinion. Our results are validated using physics-based simulations of a locust
robotic swarm.

1 Introduction

The move towards large-scale distributed systems promotes the field of collec-
tive decision-making as a fundamental area of research to address novel dis-
tributed control mechanisms. Collective decision-making encompasses (i) the
decision mechanisms used at the individual level, and (ii) the emergent behavior
at the system level. In this paper, we focus on binary decision-making processes,
also known as symmetry-breaking [3], in which two choices of the same quality
are available and the system needs to select one in a self-organized manner. For
systems comprising only one individual, the solution is rather trivial (i.e., ran-
dom). In contrast, in collective systems a mutual agreement (i.e., a consensus)
needs to be achieved [11]. In order to enable such an agreement, the presence of
noise is usually substantial. In particular, symmetry-breaking was mostly used to
demonstrate the role of noise (i.e., random choices of the individuals) in pushing
the system out of an equilibrium state [13]. Hence, it plays a key role in shift-
ing the system towards one of the two options. This shift is then amplified [22]
using interactions of a particular kind, referred to as positive feedback loops.
While positive feedback is dominating, more individuals become in favor of the
selected option and the coherence degree—represented by the fraction of indi-
viduals sharing the same opinion—increases until a consensus is achieved and
100% of individuals agree on the selected option [8,16]. At this point, negative
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feedback helps the system to preserve its selected option by damping the noise
at the individual level and demotivating the individuals to change their opinion.
The specific balance between positive feedback, negative feedback, and noise de-
fines if the system reaches a decided or undecided global state. For example, a
high level of noise may exceed the influence of the feedback loops and hence keep
the system in an undecided state. Similarly, applying a strong enough positive
feedback around a particular option may push the system to decide in favor of
that particular option even in cases of low system densities—i.e., low number of
feedback loops [17].
In this paper, we show that the interaction model is a key parameter to tune
the balance between feedback loops and noise such that the collective system
becomes decided even under significant noise levels. The interaction model is
exploited by the individuals to exchange their decisions (opinions). Individuals
interact locally using proximity models [10,20]. Local interactions allow collective
systems to exhibit scalability, since the decisions at the individual level are made
based on the personal preferences and on the influence of neighbors located in
the immediate proximity. The latter is independent of the system size when the
density is constant, hence, the functionality of the system is preserved at any
scale (size). However, the implicit assumption of sufficient local interactions, [24],
is only valid under moderate noise level e.g., moderate individual deficiency. Very
limited research focuses on the impact of the interaction model on the robustness
of collective systems against high level of noise [5].
In this study, we use coherence degree as a quality measure of collective behavior.
Coherence degree is defined as the fraction of individuals adopting a common
opinion/committing to a common option. In statistical physics, in a phase tran-
sition this measure is referred to as the order parameter. We use this measure to
compare the efficiency of different interaction models in preserving the coherence
of a collective behavior in a robot swarm under high levels of noise. The noise
level is increased using one of the following two mechanisms: (i) reducing the
impact of feedback loops through massive break-down of interaction links be-
tween the individuals by introducing robot breakdowns, and (ii) increasing the
tendency to switch opinion randomly at the individual level. We go beyond the
proximity (local) interaction model, and investigate scale-free [1], small-world
[23], and regular models. As a case study, we use the locust marching behavior,
in which individuals need to decide on their motion direction, and they have only
two options of going right or left. Consequently, a consensus is achieved when all
individuals select the same direction of motion. This corresponds to the highest
degree of coherence in the collective behavior (100% of the individuals agree).
The paper is organized as follows, in Sec. 2, we specify the decision-making
model used by the individuals to select their direction and velocity of motion in a
locust marching scenario. The different interaction models, which we investigate
in this paper are explained in Sec. 3. In Sec. 4, we present both the robot and
environment configurations used in our physics-based simulations. Subsequently,
the results obtained from these simulations are demonstrated and discussed in
Sec. 5, and the paper is concluded in Sec. 6.
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2 Decision-making model

Our collective model, as mentioned above, is inspired by one of the prominent
natural examples of self-organized behavior: the collective motion (referred to
as the marching bands) of desert locust swarms (Schistocerca gregaria). It has
been previously shown by Buhl et al. that the collective behavior of marching
locusts is similar to the behavior of the particles described by the Czirók model
[6]. The latter originates from the Vicsek model and describes self-propelled
interacting particles moving in 1D [21,9]. We adopt the Czirók model to define
the individual decision-making processes, except that in our implementation
locusts are simulated by a swarm of N homogeneous robots. Similar to Buhl et
al., we consider a ring-shaped arena, where robots need to decide to go either
left (i.e., the left-goers) or right (i.e., the right-goers), while avoiding collisions
with other robots or the arena walls. The initial position and orientation of the
robots are sampled from a uniform distribution. Following the discrete Czirók
model [26,4], position xi(t) and velocity ui(t) ∈ IR of robot i are updated at
every time step ∆t = 1 according to

xi(t+ 1) = νui(t) (1)

ui(t+ 1) = δs [G(〈ui(t)〉) + ζi(t)] , (2)

with ν being a speed parameter and ζi(t) ∈ [−1.0, 1.0] uniformly distributed
noise. The propulsion and friction forces are given by the piece-wise continuous
function

G(〈ui(t)〉) =


1
2 (〈ui(t)〉+ 1), 〈ui(t)〉 > 0
1
2 (〈ui(t)〉 − 1), 〈ui(t)〉 < 0

0, otherwise,

(3)

where 〈ui(t)〉 is the average over the set of velocities of i’s neighbors. Finally,
in Eq. (2) we extended the discrete Czirok model by the factor δs, which is −1
with probability ps, and 1 otherwise. Note that the originial Czirok model does
not include δs, which we added to introduce the probability ps to spontaneously
switch the heading direction, i.e. the sign of ui(t). This is the main extension of
the Czirok model that allows to account for an additional noise on the individual
decision-making process [12], while ζi(t) represents the sensor noise, i.e. the
uncertainty in the perception of the neighborhood opinion. From the sign of
ui(t) we can deduce the state of robot i: if ui(t) > 0 (ui(t) < 0) then we denote
i as a left-goer robot (right-goer robot), respectively. Therefore, the collective
state or collective behavior of the system is given by:

φ(t) =
1

N

N∑
i

ui(t)

|ui(t)|
(4)

The absolute value of this measure represents the degree of coherence in the col-
lective behavior (system’s decision). When this degree is |φ(t)| = 1, i.e., 100% of
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the individuals agree on one opinion, the system reaches consensus. Fluctuations
that occur due to different sources of noise—i.e. sensor noise ζ and spontaneous
opinion switching ps—affect directly the degree of coherence achieved at the
system level.

3 Interaction Models

Four different types of interaction (network) models are considered in this paper:
(i) proximity network (PN), (ii) regular network (RN), (iii) small-world (SW),
and (iv) scale-free (SF). These models differ fundamentally in how individuals
connect.
First, PN models describe topologies in which each robot interacts with those
robots that are within its proximity communication radius. Therefore, the choice
of the communication radius has a significant influence on the communication
degree of the robot. Two extreme values of the communication radius are rc = 0
and rc > dA, where dA denotes the diameter of the arena. In former case,
there are no interactions, i.e. the degree of every robot is zero and the collective
behavior is the average over the opinions that are purely governed by noise.
When rc > dA, every robot interacts with every other robot in the arena which
results in a complete network. For a swarm with an even number of individuals
(majority is always available in the individual’s neighborhood) this will always
lead to consensus. However, complete networks have no locality because every
robot knows the state of the entire system at every time step. In contrast, we
obtain PN models with local interactions over a limited communication radius
rc and an approximated average of communication degree 〈k〉.
Second, RN models are topologies in which all robots have equal degree and in
which neighbors are selected at random, irrespective of their physical distance.
Consequently, robots might be connected to robots at larger physical distances.
Third, SW models originate by randomly rewiring RN networks such that the
network distance (hop count) between two randomly chosen nodes grows pro-
portionally to the logarithm of the total number of nodes [23,15]. Following the
Watts-Strogatz model [23], we generate SW models by starting from a RN model
and replace random links with new links—between any two nodes irrespective
of their physical distance—that are sampled from a uniform distribution with
probability psw. Differently from RN models, the latter process introduces a
number of hubs, i.e. nodes with above-average degree.
Fourth, SF models are a special type of SW models, observed in a large number
of natural and biological systems [25,15]. They are characterized with a power-
law distributed degree and a very short average distance, making these networks
ultra-small [7]. On the one hand, this implies the presence of a few extraordinary
hubs with degrees that are far higher than the network average. On the other
hand, most nodes have a relatively low degree such that the removal of a random
node is not likely to affect the system connectivity. Therefore, SF networks are
known to be robust against random node failure. Following the Barabasi-Albert
model [2], we generate scale-free networks by starting from a small complete
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network of 10 nodes (robots). Subsequently, each of the remaining N − 10 nodes
(N denotes the size of the swarm) is iteratively added with a fixed degree. Each of
the newly added nodes is connected to a node i with a probability proportional to
i’s degree ki, a process also known as preferential-attachment [2]. The latter step
increases ki and at the end of the network growth process the resulting average
network degree amounts to 〈k〉 being the same as in the other interaction models.

4 Simulations

In this section we describe the physics-based simulations that we conducted using
ARGoS [19] to analyze the global collective behavior of a homogeneous swarm of
N = 500 simulated Footbots1. ARGoS allows us to perform our simulations with
taking the robot’s physics into consideration, and hence facilitates the generation
of more realistic results. In the following, we present the configurations adapted
at both individual and environment levels.

4.1 Robot configuration

In our simulations, robots move randomly with a linear speed of ν = 5m/ts, and
try to avoid collisions by halting either the left or the right wheel, depending
on its orientation relative to the position of the nearby robot or wall. However,
in cases when collision avoidance requires to turn more than 90◦, the robot is
programmed to maintain the sign of ui(t). Therefore, collision avoidances do not
constitute an additional source of spontaneous direction switching. Nevertheless,
the density of robots used in our experiments—i.e., the number of robots over the
area of the arena allows to account for a minimized level of spacial interferences
[14]. Additionally, the rate of collision avoidances is greatly reduced when the
swarm is in consensus because then robots move in the same direction and the
possibility of a potential collision becomes negligible. While moving, each robot
communicates and exchanges opinions with its neighbors. The opinion of robot
i is given by the value of ui(t) (Eq. (2)), for which the sensor noise is set as
ζ ∈ [−1, 1], and the spontaneous switching probability ps. The two types of
implemented communications are proximity (short-range) communications and
targeted long-range communications. To enable long-range communications over
the whole arena area, we assume that the inner walls of the ring-shaped arena
are lower than the level of the range-and-bearing sensors and actuators but high
enough to be perceived by the robot as physical obstacles. This allows to include
all communication models described in the previous section.

4.2 Environment configuration

An important system property is the density of the swarm inside the arena [9,6].
Therefore, apart from the size of the swarm, the shape and the area of the

1 The large swarm size is chosen for statistical reliability and a sound comparison of
the features of the interaction models, which often occur in the limit of large N .
http://www.swarmanoid.org/swarmanoid_hardware.php

http://www.swarmanoid.org/swarmanoid_hardware.php
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environment have a significant influence on the system dynamics. In our exper-
iments, swarm robots are confined within a ring-shaped arena with a diameter
of 4 m (24 m) for the inner (outer) walls, respectively. The form of the arena
encourages the robots to move either clockwise or counter-clockwise, i.e. right or
left. Because the arena has a finite radial width, we program the robots to avoid
unnecessary radial movement by always maintaining an angle of (90 ± 5)◦ to a
light beacon located in the center of the arena (i.e. unless collision avoidance is
required).
To simulate the event of a break-down, we deactivate the majority of robots at
t = td randomly. When a robot i is deactivated, it stops moving, i.e. ui(td) = 0,
and all its communication links are broken. The latter implies that the break-
down leads to a substantial decrease of interactions, often followed by a loss of
consensus or a significant drop in the degree of coherence. However, as we will
demonstrate in the next section, certain interaction models allow the swarm to
recover the degree of coherence to a higher level even if more than two thirds
of the swarm individuals are deactivated. Tab. 1 summarizes the parameters
settings over the different interaction models implemented in this paper. Note
that the interaction models are all generated such that the average robot degree is
the same over all models for a fair comparison. This is set to 〈k〉 ≈ 6. Finally, the
rewiring probability psw for the generation of the SW models is set to psw = 0.5
to guarantee the occurrence of nodes with above-average degree. In this regard,
SW models represent a transition model between RN and SF models.

Interaction model Parameter Value

Proximity communication range rc 1.3 m
Regular degree kr 6

Small-world rewiring probability psw 0.5
Scale-free degree ksf 3

Table 1: Overview of implemented interaction models and the parameters used to
generate them.

Fig. 1 depicts a top view of the ring-shaped arena, over which the locust swarm is
performing collective marching. The screen-shots are taken after a severe loss of
robots (i.e., break-down of 65% of the interaction links) for the three interaction
models PN, SW, and SF.

5 Results and Discussion

We launch different sets of physics-based simulations to analyze the influence of
the interaction model on the degree of coherence achieved in a locust swarm that
is exposed to a high level of noise. We first simulate a strong sudden occurrence
of noise through a major break-down in the interaction links. The intensity
of the break-down—represented by the number of deactivated robots—has the
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(a) (b) (c)

Fig. 1: Top view on the locust swarm. Green (red) robots are left-goers (right-goers),
respectively, and black robots are deactivated. (a) PN, (b) SW, and (c) SF, all after
break-down. For a clearer picture of the dynamics, see the recordings [18].

main influence on the achieved degree of coherence. Secondly, we use a new
set of experiments to simulate the high level of noise through increasing the
probability of the individual spontaneous switch, together with the incidence of
robot break-down events.
We start with a robot locust swarm that suffers a major break-down after reach-
ing a high degree of coherence (i.e. over 75% of the robots agree on the same direc-
tion). The individuals in this set of experiments are characterized with relatively
low level of individual noise (i.e., spontaneous switch probability ps = 0.02). The
individual noise is set low in order to focus on the robustness of the different
interaction models against random break-down. The coherence degree is mea-
sured using the absolute value |φ(t)|—i.e., the fraction of robots agreeing on the
same opinion. We analyze the corresponding time average ¯|φ| as a function of
the percentage of deactivated robots to reveal the efficiency of each interaction
model in preserving a high coherence degree.
In each experiment, and for all interaction models, we first let the swarm achieve
a high coherence degree (over 75% of the robots). Subsequently, we deactivate
a certain percentage of the robots. As mentioned above, for a fair comparison
of the different interaction models, all simulations are configured such that the
average robot degree before the break-down is the same, here set to 〈k〉 ≈ 6.
We analyze the time evolution of the coherence degree |φ(t)| to study the effi-
ciency of the applied interaction model in preserving a high |φ(t)|. The left part
of Fig. 2 demonstrates the results, in which every data point represents the co-
herence degree |φ(t)| averaged over the post break-down time—i.e., between the
break-down event and the end of simulation at T = 5000ts. The time evolution
of |φ(t)| is illustrated in the inset, for the PN model and the deactivation of 65%
of robots. The resulting value of ¯|φ| shown in the inset corresponds to one data
point in the major plot, other data points were obtained accordingly. As shown,
|φ(t)| drops for all interaction models with increasing percentages of deactivated
robots. Nevertheless, there are significant differences among the interaction mod-
els. We can notice that all models except of the PN model were able to preserve
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a high coherence degree ( ¯|φ| > 0.75) up to 50% of deactivation2. Furthermore,
the SF interaction model shows a pronounced tendency of achieving higher ¯|φ|
than the other models starting from 65% of deactivation. At this point, the per-
formance of the SW and RN models demonstrate a clear drop. However, under
the RN model ¯|φ| drops faster than it does under the SW, as can be seen be-
tween the deactivation of 65% and 75%. This can be explained by the fact that,
for the same average degree, the SW model has a higher clustering coefficient
than the RN model: it has a number of robots with higher connectivity degree.
Beyond 75% deactivation, SW and RN models start to behave similarly and in
agreement with the PN model. SF preserves its superior performance up to 85%
of deactivation, due to the high robustness of its hubs.
We continue our experiments with the same low level of individual noise (ps =
0.02) and we fix the deactivating percentage to 65%, at which the coherence
degree drops for all models below ¯|φ| < 0.5. For this setting, we investigate
the efficiency of each interaction model in recovering the coherence degree to a
higher level. We analyze this efficiency for different robot average communica-
tion degree. For this purpose, we define ¯|φ| as a function of the robot’s average
communication degree 〈k〉, aiming to determine the minimum rewiring threshold
needed for the influence of the feedback loops to overcome the noise influence and
hence increasing the degree of coherence in the collective behavior. In this set
of simulations, the system starts with the PN model, followed by a break-down
of 65% of interaction links at td = 10000ts. Next, we use targeted rewiring at
t = 12500ts, to generate the different interaction models with the same average
robot degree. The right side of Fig. 2 demonstrates the results of these exper-
iments. The inset shows an example for the time evolution of φ(t) for the PN
model before the break-down event (the black dashed line), and PN (blue) or SF
(orange) interactions for t > 12500ts. The latter period of time is used to com-
pute ¯|φ| which corresponds to one point in the major plot. This plot shows that
SF, SW, and RN models are able to restore a high coherence degree ¯|φ| > 80%
with an average robot degree of 〈k〉 = 4, while the PN model requires 〈k〉 ≈ 7.5
to restore a similar degree of coherence.
As mentioned above, after examining the robustness of the interaction mod-
els against mere break-down events, we continue investigating their robustness
against increasing the level of individual noise (i.e., the spontaneous switch ps).
For this purpose, we run a new set of experiments, in which we increase the level
of individual noise, first, to ps = 0.05. Results are illustrated on the left side of
Fig. 3. In this figure, we can notice that despite low coherence degree ¯|φ| < 0.5,
the SF model outperforms other models significantly starting from the deactiva-
tion percentage of 55%. Below this (critical) percentage of deactivations, all SF,
SW and RN models were able to generate similar degree of coherence, which is
significantly better compared to the PN model. A behavior similar to the one
shown in Fig. 2 is observed, that is the SW model generating higher ¯|φ| than
the RN model for specific deactivation percentages before converging to a sim-

2 The results for the deactivation of < 50% of the robots are shown in the supplemen-
tary materials [18]
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Fig. 2: Comparison of the average collective state ¯|φ| as a function of the percentage of
deactivated robots (left) and the average communication degree (right). Left inset: time
evolution of |φ(t)| after the break-down. Right inset: Time evolution of φ(t) starting
with PN model, break-down, targeted rewiring of interactions to a SF model (orange)
or no rewiring (blue, continued). Data points were averaged over 30 runs.

ilar behavior that approaches the PN model. To better investigate the specific
role of the individual noise, we start with a swarm of 175—i.e., 35% (65% deac-
tivation) of the total N=500—and with an average robot degree of 4—i.e., the
average degree at which all models (except for the PN model) are able to achieve
¯|φ| > 80% with a swarm of 175 in the previous experiments, see the right side

of Fig. 2—and we analyze ¯|φ| for different values of ps. Results are illustrated
on the right side of Fig. 3. In this figure, we can notice the significantly higher
robustness of all interaction models in comparison to the PN model in terms of
the obtained ¯|φ|. The behavior of SF, SW, and RN models seems similar up to a
certain noise level (here ps = 0.08), up which the SF model starts to clearly out-
perform other models (i.e., demonstrating higher coherence degree). This can be
also deduced from the inset on the right side of Fig. 3, which corresponds to one
data point and shows the phase transition of the coherent behavior generated
by the SF model. Moreover, both SW and RN models demonstrate a behavior
that is initially similar to the SF model and later approaches the PN model.
In general, the data points at which the behavior of SW and RN models aligns
with the behavior of the PN model (see Fig. 2 and 3) indicate that it is not
merely the presence of long-range interactions that contributes to the increased
degree of coherence. Nor is it the value of the network distance, as RN and SW
models behave similarly in our experiments. Instead, our conjecture is that it is
the fraction of well-connected individuals that significantly influences coherence
and robustness of the collective system affected by severe noise levels. On the one
hand, these well-connected individuals have access to a sufficiently large sample
of the swarm to reliably estimate its collective state. On the other hand, they
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Fig. 3: Comparison of the average collective state ¯|φ| as a function of the percentage
of deactivated robots (left) and the spontaneous switching probability ps (right). Left
inset: time evolution of |φ(t)| after the break-down. Right inset: Time evolution of φ(t)
at ps = 0.08, after the break-down, with alternative targeted rewiring of interactions
to a SF topology (orange) or no rewiring (blue, continued) and an average degree of
〈k〉 ≈ 4. Data points were averaged over 30 runs.

can reach and influence the opinion of a significant number of individuals. Both
features allow the system to preserve sufficient feedback loops that counteract
the effects of noise.
Finally, the ratio of positive feedback to noise also defines the level of adaptivity
of a collective system. When this ratio is critical, phase transitions occur [6,21]
and the swarm is able to explore different options (in our case two options), mak-
ing the swarm more adaptive to environmental changes. These phase transitions
were observed in our systems as well, an example is shown in the right inset
of Fig. 2 before the break-down (i.e., for t < 10000 ts). However, in the same
inset one can see that after rewiring the interactions to a SF model (orange
data points at t > 12500 ts), the presence of positive feedback outweighs the
effects of noise. Thus, the increased coherence degree stabilized and the adap-
tivity decreased significantly such that no phase transitions occur until the end
of the experiment. However, adaptivity can be restored by increasing the level
of noise, as we can see by considering the right inset of Fig. 3 for comparison,
demonstrating that the balance between positive feedback and noise is crucial
to the collective system performance.

6 Conclusion

In this paper, we have investigated the impact of the interaction model used in
collective system on the coherence degree of its decisions under high levels of
noise. Beyond local interactions, we have investigated the coherence degree of a
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collective behavior under: SF, SW, and RN interaction models. The interaction
models were analyzed using the case study of locust marching, which repre-
sents a symmetry-breaking decision-making problem. Our results have revealed
a clear evidence of the significant role the interaction model plays in defining the
coherence degree under different noise sources. SF has shown an outstanding
performance over other models when the level of noise in the system exceeds
a particular threshold. The influence of noise was increased either though in-
troducing a break-down of a particular percentage of the interaction links or
through increasing the probability to spontaneously switch of the opinion at the
individual level (i.e., the individual noise). SW and RN models act similar to
SF up to a specific level of noise, after which both demonstrate a drop in per-
formance, however, a smaller drop of the SW model. Starting from a particular
noise level, SW and RN show similar behavior that approaches the behavior of
the PN model. Our findings can help as a preliminary step on the way to engi-
neering artificial swarms with a robust coherence degree against high levels of
noise from different sources.
In future work, we plan to compare the different interaction models in terms
of the mean time required to achieve high coherence levels or even consensus.
Furthermore, we plan to investigate the exact relation between the drop in the
coherence degree and the connectivity measures of the collective system, such
as the clustering coefficient and the fraction of hubs. Finally, it is worthwhile to
examine the combination of PN and SF models that could additionally improve
coherence degree of collective behavior as well as collective response to localized
external stimuli.
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