146 research outputs found

    The Parkinson's Disease genome-wide association study locus browser

    Get PDF
    Background: Parkinson's disease (PD) is a neurodegenerative disease with an often complex component identifiable by genome-wide association studies. The most recent large-scale PD genome-wide association studies have identified more than 90 independent risk variants for PD risk and progression across more than 80 genomic regions. One major challenge in current genomics is the identification of the causal gene(s) and variant(s) at each genome-wide association study locus. The objective of the current study was to create a tool that would display data for relevant PD risk loci and provide guidance with the prioritization of causal genes and potential mechanisms at each locus. Methods: We included all significant genome-wide signals from multiple recent PD genome-wide association studies including themost recent PD risk genome-wide association study, age-at-onset genome-wide association study, progression genome-wide association study, and Asian population PD risk genome-wide association study. We gathered data for all genes 1 Mb up and downstream of each variant to allow users to assess which gene(s) are most associated with the variant of interest based on a set of self-ranked criteria. Multiple databases were queried for each gene to collect additional causal data. Results: We created a PD genome-wide association study browser tool (https://pdgenetics.shinyapps.io/GWASBrowser/) to assist the PD research community with the prioritization of genes for follow-up functional studies to identify potential therapeutic targets. Conclusions: Our PD genome-wide association study browser tool provides users with a useful method of identifying potential causal genes at all known PD risk loci from large-scale PD genome-wide association studies. We plan to update this tool with new relevant data as sample sizes increase and new PD risk loci are discovered

    Penetrance of Parkinson's Disease in LRRK2 p.G2019S Carriers Is Modified by a Polygenic Risk Score

    Get PDF
    Pentti Tienari työryhmän jäsenenä.Background Although the leucine-rich repeat kinase 2 p.G2019S mutation has been demonstrated to be a strong risk factor for PD, factors that contribute to penetrance among carriers, other than aging, have not been well identified. Objectives To evaluate whether a cumulative genetic risk identified in the recent genome-wide study is associated with penetrance of PD among p.G2019S mutation carriers. Methods We included p.G2019S heterozygote carriers with European ancestry in three genetic cohorts in which the mutation carriers with and without PD were selectively recruited. We also included the carriers from two data sets: one from a case-control setting without selection of mutation carriers and the other from a population sampling. Associations between polygenic risk score constructed from 89 variants reported recently and PD were tested and meta-analyzed. We also explored the interaction of age and PRS. Results After excluding eight homozygotes, 833 p.G2019S heterozygote carriers (439 PD and 394 unaffected) were analyzed. Polygenic risk score was associated with a higher penetrance of PD (odds ratio: 1.34; 95% confidence interval: [1.09, 1.64] per +1 standard deviation; P = 0.005). In addition, associations with polygenic risk score and penetrance were stronger in the younger participants (main effect: odds ratio 1.28 [1.04, 1.58] per +1 standard deviation; P = 0.022; interaction effect: odds ratio 0.78 [0.64, 0.94] per +1 standard deviation and + 10 years of age; P = 0.008). Conclusions Our results suggest that there is a genetic contribution for penetrance of PD among p.G2019S carriers. These results have important etiological consequences and potential impact on the selection of subjects for clinical trials. (c) 2020 International Parkinson and Movement Disorder SocietyPeer reviewe

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease : a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7.8 million single nucleotide polymorphisms in 37688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1.4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0 .0035 for intracranial volume, p=0.024 for putamen volume), smoking status (p=0.024), and educational attainment (p=0.038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8.00 x10 -7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Copyright (C) 2019 Elsevier Ltd. All rights reserved.Peer reviewe

    Exploring dementia and neuronal ceroid lipofuscinosis genes in 100 FTD-like patients from 6 towns and rural villages on the Adriatic Sea cost of Apulia

    Get PDF
    Frontotemporal dementia (FTD) refers to a complex spectrum of clinically and genetically heterogeneous disorders. Although fully penetrant mutations in several genes have been identified and can explain the pathogenic mechanisms underlying a great portion of the Mendelian forms of the disease, still a significant number of families and sporadic cases remains genetically unsolved. We performed whole exome sequencing in 100 patients with a late-onset and heterogeneous FTD-like clinical phenotype from Apulia and screened mendelian dementia and neuronal ceroid lipofuscinosis genes. We identified a nonsense mutation in SORL1 VPS domain (p.R744X), in 2 siblings displaying AD with severe language problems and primary progressive aphasia and a near splice-site mutation in CLCN6 (p.S116P) segregating with an heterogeneous phenotype, ranging from behavioural FTD to FTD with memory onset and to the logopenic variant of primary progressive aphasia in one family. Moreover 2 sporadic cases with behavioural FTD carried heterozygous mutations in the CSF1R Tyrosin kinase flanking regions (p.E573K and p.R549H). By contrast, only a minority of patients carried pathogenic C9orf72 repeat expansions (1%) and likely moderately pathogenic variants in GRN (p.C105Y, p.C389fs and p.C139R) (3%). In concert with recent studies, our findings support a common pathogenic mechanisms between FTD and neuronal ceroid lipofuscinosis and suggests that neuronal ceroid lipofuscinosis genes should be investigated also in dementia patients with predominant frontal symptoms and language impairments

    Original Article

    Get PDF
    The present paper deals with an investigation on the changes appearing in the mucous membrane of the nose (physiologic atrophy) in normal persons of different age groups, as contrasted with a wasting of the mucous mambrane of the nose in cases of atrophic rhinitis. The investigation has been performed for the purpose of contributing to the studies of the pathology of atrophic rhinitis. 1. Pathologic changes of a considerable degree were. observed in the epithelium in quite a large section of infants and children where it had been considered normal as a results of macroscopic examinations. 2. Metaplasia of the epithelial cells developing in the mucous membrane in the forepart of the respiratory region seems to occur as a result of the stimulus applied from without. The phenomenon was marked in the front and along the lower edge of the inferior turbinal, showing a tendency to increase in magnitude as the age advance. It did not, however, spread over a wide area, nor was there any marked development of cornification. An increase in mucus secretion, as well as in the number of goblet cells, was noticed in the epithelium as the age advance. Mucous degeneration gradually set in at the end of forties, becoming marked in the sixties. 4. In the basal membrane, the hyaline layer, which is its secondary form, grew in size with age, and a substance which stains with Hale\u27s stain was detected in it. This substance seems to have an important share in the mucus secreting function of the epithelium. 5. It seems that the epithelium of the mucous membrane of the upper respiratory tract continues to function even in considerably advanced ages. 6. The lymphoid tissue situated underneath the epithelium attained the largest quantity in persons about 20 years old; it began to diminish and grow less thick in persons over 40. The presence of the elastic fiber was noticed in the subepithelial layer in all age groups, though the number of persons with this phenomenon was small.7. The glands wers under-developed in children of about 10; they grew rapidly after that age until about 40 when they began to show a tendency to atrophy. 8. It seems that the periglandular lymphocytes, which infiltrate without bringing about the disintegration of the glands, take charge of the metabolism of the glands. A large number of them were found in infancy but they showed a marked decrease in number in persons over about 40. It would seem that, in highly advanced ages, non-inflammatory disintegration of the glands could possibly occur as a result of the infiltration of the lymphoid tissue. 9. The formation of the oncocyte, an unusual cell of the epithelium of the gland which characterizes the old age, was noticed in 7 cases. 10. The blood vessels manifested changes of a high degree in persons of advanced ages: they revealed evidences of functional disturbance of a high degree when stained by the stains of H. E, Weigert, PAS and Hale. This would show the measure of the influence that has been exerted on the function of the mucous membrane. 11. Corpora cavernosa was under-developed in infancy but became well-developed in persons of about 20; a decrease in the number of bodies and a diminution in size of the inner lumen became marked in persons over 40, becoming more marked in persons over 50

    Polygenic Parkinson's Disease Genetic Risk Score as Risk Modifier of Parkinsonism in Gaucher Disease

    Get PDF
    Background: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. Objective: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. Methods: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. Results: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). Conclusions: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF
    The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC?2 pathway as drug-target

    Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors

    Get PDF
    peer reviewedObjective: The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available. Methods: We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership–Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses. Results: A higher polygenic resilience score was associated with a lower risk for PD (β = −0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci. Interpretation: The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 202
    corecore