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ABSTRACT: Background: Parkinson’s disease
(PD) is a neurodegenerative disease with an often com-
plex component identifiable by genome-wide associa-
tion studies. The most recent large-scale PD genome-
wide association studies have identified more than
90 independent risk variants for PD risk and progression
across more than 80 genomic regions. One major chal-
lenge in current genomics is the identification of the causal
gene(s) and variant(s) at each genome-wide association
study locus. The objective of the current study was to cre-
ate a tool that would display data for relevant PD risk loci
and provide guidance with the prioritization of causal
genes and potential mechanisms at each locus.

Methods: We included all significant genome-wide signals
from multiple recent PD genome-wide association studies
including themost recent PD risk genome-wide association
study, age-at-onset genome-wide association study, pro-
gression genome-wide association study, and Asian popu-
lation PD risk genome-wide association study. We
gathered data for all genes 1 Mb up and downstream of
each variant to allow users to assess which gene(s) are
most associated with the variant of interest based on a set
of self-ranked criteria. Multiple databases were queried for
each gene to collect additional causal data.
Results: We created a PD genome-wide association
study browser tool (https://pdgenetics.shinyapps.io/
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GWASBrowser/) to assist the PD research community
with the prioritization of genes for follow-up functional
studies to identify potential therapeutic targets.
Conclusions: Our PD genome-wide association study
browser tool provides users with a useful method of iden-
tifying potential causal genes at all known PD risk loci
from large-scale PD genome-wide association studies.
We plan to update this tool with new relevant data as

sample sizes increase and new PD risk loci are discov-
ered. © 2020 The Authors. Movement Disorders published
by Wiley Periodicals LLC on behalf of International
Parkinson and Movement Disorder Society. This article
has been contributed to by US Government employees
and their work is in the public domain in the USA.
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Parkinson’s disease (PD) is a multifactorial disease for
which both genetic and environmental risk factors play a
role. In the past decade, approximately 20 genes have
been associated with PD or parkinsonism in families.1

More than 90 common variants have been associated
with sporadic PD risk, age at onset, and progression
using genome-wide association studies (GWASes).2-5

One major challenge remaining after GWAS identifica-
tion of risk loci is the localization and characterization of
specific causal variant(s) and gene(s) at each locus. A
common misconception is that the most significant
GWAS variant exerts an effect on the nearest gene
(as commonly reported in GWAS articles), but this is
unlikely to be the case. First, the GWAS variant is not
necessarily causative on its own, but is instead likely to
tag a functional region or variant in high linkage disequi-
librium (LD). Second, variants in noncoding regions con-
taining regulatory sequences may impact distant genes by
altering 3-dimensional chromatin conformation, placing
these genes outside the predefined LD region.6,7 Several
approaches can be taken when prioritizing genes for each
significant variant. For PD, these approaches include
using single-cell RNA-seq to determine gene expression
in relevant cell populations,8 transcriptome-wide associa-
tion studies,9 and quantitative trait loci (QTL).3 Others
have functionally prioritized a single locus (SNCA10 and
TMEM17511), but these functional single-locus experi-
ments often do not scale up to loci with many genes.
Other non-disease-specific pipelines have been developed
using epigenetic and chromatin conformation data sets in
addition to expression QTL data12,13; however, some
disease-specific interpretation is required. Therefore, we
have aggregated multiple data sets from several sources
to create a versatile and user-friendly tool (https://
pdgenetics.shinyapps.io/GWASBrowser/) to prioritize spe-
cific genes and variants for additional PD GWAS and
functional studies that aim to identify potential therapeu-
tic targets (Fig. 1).

Methods
GWAS Loci and Gene Selection

All GWAS loci and summary statistics were gathered
from our recent PD GWAS studies.2-5,14,15 We selected
all genes 1 megabase (Mb) up and downstream of each

significant variant from the hg19 reference genome.16

Genes in this 2-Mb range were included in locus zoom
plots created for each variant.17

Gene Expression Data
The Genotype-Tissue Expression (GTEx) portal was

accessed on February 12, 2020, to obtain v8 gene expres-
sion data. Transcript per million (TPM) data was averaged
across all available brain and substantia nigra (SN) sam-
ples individually for each gene. Average single-cell RNA
sequencing expression data were also included for SN
astrocytes, SN dopaminergic neurons, SN endothelial
cells, SN GABAergic cells, SN microglial cells, SN oligo-
dendrocyte cells, and SN oligodendrocyte progenitor
cells.18 An arbitrary value of 5 TPMwas chosen as the cut-
off for significance in brain tissue, SN tissue, and SN dopa-
minergic neuron averages. Genes with greater than 5 TPM
in any of these 3 data sets were given a value of 1 in the
evidence table in the Brain Expression, Nigra Expression,
or SN-Dop. Neuron Expression columns. Genes with no
available expression data were set to NA in these columns.

Expression Quantitative Trait Loci Data
Expression quantitative trait locus (eQTL) data were

collected from the summary-data-based Mendelian ran-
domization (SMR) website for brain tissues19 and
processed using SMR software tools.20 Blood tissue
eQTL data were collected from the eQTLGen consor-
tium.21 Additional brain tissue data were collected from
the PsychENCODE project.22 Locus compare plots were
generated using GWAS data and the appropriate eQTL
data to compare the distribution of eQTL and GWAS
data.23 Plots were omitted if they contained neither the
locus risk variant nor a good proxy variant. Proxy vari-
ants were obtained using the LDlinkR library24,25 in R
(https://www.r-project.org/) to find variants with r2 > 0.7
with the risk variant. Genes were given a value of 1 in the
“QTL-brain” column in the evidence table if there were
sufficient data to create brain locus compare plots using
Qi et al eQTL data, PsychENCODE eQTL data, or
PsychENCODE isoQTL data. Genes were given a value
of 1 in the “QTL-blood” column in the evidence table if
there were sufficient data in the blood tissue eQTL data
to create a locus compare plot. Pearson correlation
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coefficients between GWAS and blood or brain eQTL/
isoQTL P values were calculated using R for each gene
with sufficient data. The “QTL-correl” column in the evi-
dence table is given a value of 1 if the magnitude of the
correlation coefficient is greater than the user assigned
cutoff (default cutoff of 0.3) in any of the gene’s locus
compare plots. This column was given a value of “NA” if
the gene has no plots with a “QTL-brain” or “QTL-
blood” score of 1.

Literature Search
Automated literature searches were performed in

PubMed using the search term “GENE_NAME[Title/
Abstract] AND Parkinson’s[Title/Abstract]” and “GENE_
NAME[Title/Abstract]” to search for the respective gene
and its occurrence in PD literature using the rentrez pack-
age in R.26 The number of search results was collected for
all the genes in each locus to create a bar plot of PubMed
hits for each locus. Genes with 5 or more search results in
the PD and gene name search were given a score of 1 in
the “Literature Search” column in the evidence table. A
word cloud was generated for each gene using the
PubMedWordcloud package in R.27 Last, gene descrip-
tions were obtained from GeneCards.28

Constraint Data
Constraint data were downloaded from the gnomAD

browser (https://gnomad.broadinstitute.org/downloads).29

These data were included to predict how resistant genes
are to variation. Constraint z scores were included for
synonymous variants and missense variants. A probability
of being loss-of-function intolerant (pLI) score was
included for loss-of-function variants. Observed/expected
variant values were included for these 3 variant types,
along with the 90% confidence interval for each value.
Genes were given a score of 1 in the “Variant Intolerant”
column in the evidence table if the upper limit of the
90% confidence interval was less than 0.35 for any
variant type.

Burden Data
Burden summary statistics were obtained from the

most recent GWAS3 and an exome sequencing study in
PD (article in process). In total, 40 different burden
tests on exome sequencing data and 2 different burden
tests on imputed GWAS data were performed using
only missense and loss-of-function variants with minor
allele frequency cutoffs of 0.05 and 0.01. The minimum
P values of all 40 exome burden tests were included for
each gene in the burden table of the browser. The mini-
mum P value for the 2 burden tests on imputed data
for each gene was included in the same table. These
2 minimum P values were Bonferroni-corrected by the
number of genes with data in the burden test to deter-
mine significance (1480 genes for exome and 1026
genes for imputed). Genes with significant burden

FIG. 1. Flowchart of data gathered for the browser. Summary of the variants, genes, and data sets included in the browser to prioritize genes for each
locus. Data sets include genome-wide association study (GWAS) summary statistics, known coding variants (Nalls et al, 2019),3 nominated genes,
online Mendelian inheritance in man (OMIM), and human gene mutation database (HGMD) disease genes, expression quantitative trait locus data
(eQTL), variants from the GWAS catalogue, known Parkinson’s disease and related disorder genes, PubMed literature data, Genotype-Tissue Expres-
sion (GTEx), and single-cell expression data, burden test data, fine-mapping data, and constraint data.
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results in either exome or imputed data were given a
value of 1 in the “Burden” column in the evidence
table. Genes with no available burden data were given
a value of “NA” in this column.

Nalls et al 2019 Nominated Genes and Known
Parkinson’s Disease Genes

The PD risk GWAS3 used 4 QTL data sets to deter-
mine causal genes for each GWAS signal in the study.
These data were obtained from Supplementary Table 1
of the Nalls et al 2019 GWAS paper. Seventy of the
90 variants from this study were found to be associated
with a putative causal gene. These genes were given a
value of 1 in the “Nominated by META5” column of
the evidence table. Genes known to be monogenic for
PD, parkinsonism, or other related movement disorders
were given a value of 1 in the “PD Gene” column in
the evidence table.1,30

Other Disease Genes
Disease gene data were gathered from the Human

Gene Mutation Database (HGMD)31 and Online Men-
delian Inheritance in Man (OMIM).32 For HGMD,
only genes with variants classified as “DM” (disease-
causing mutations) were included. These genes were
given a value of 1 in the “Disease Gene” column in the
evidence table.

Coding Variants
Coding variants in linkage disequilibrium (LD) with

risk variants were obtained from internal databases. R2

and D0 LD scores were calculated using PLINK.33 Com-
bined annotation-dependent depletion (CADD) scores
were obtained from the CADD database using
ANNOVAR.34 Frequencies were obtained from the
gnomAD database also using ANNOVAR.29,34

FIG. 2. Locus zoom and locus compare plots for locus 16 and variant rs11707416 and P2RY12. (A) Locus zoom Manhattan plot for risk variant
rs11707416 on locus 16. The risk variant is uniquely colored purple, and all other variants are colored by their r2 value. Recombination rate peaks are
plotted in blue. Nearby genes are included at the bottom, with P2RY12 highlighted. (B) Locus compare plots for P2RY12 on locus 16 plot –log10P
values for Nalls et al (2019) GWAS data (y axis) and for different eQTL data sets (x axis). Data sets available for P2RY12 are Qi et al brain eQTL, Vosa
et al blood eQTL, and PsychENCODE brain eQTL (left to right). Variants are colored by their r2 value, and the risk variant is labeled and uniquely colored
purple.
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Associated Variant Phenotypes
Phenotypes of variants in LD with risk variants were

obtained from the GWAS catalog v1.0.2.35 R2 and D0

LD scores were calculated using PLINK (v1.9)36 from a
large PD case-control reference set including over
40,000 individuals. Frequencies were obtained from the
gnomAD database using ANNOVAR.29,34

Fine-Mapping
Variants in the PD risk meta-analysis summary statis-

tics3 were reannotated to GRCh38p7 build positions
using dbSNP build 151. If a variant’s dbSNP rsid was
not present in dbSNP build 151, it was excluded from
further analysis. The summary statistics were par-
titioned into risk regions or loci based on physical dis-
tance. Per chromosome, these partitions were generated
iteratively by finding the variant with the smallest
P value and extracting this variant and those variants
within 1 Mb of it. The region of extracted proximal
variants was checked against other extracted regions,
and if their edges were within 100 kb, the regions were
merged. These iterations continued until no variant
with a GWAS P < 5 × 10−8 remained within the PD
meta-analysis summary statistics.
The FINEMAP tool3,37 was used to fine-map these

PD-risk locus regions. Finemap uses Shotgun Stochastic
Search38 and Bayesian Model Averaging39 to identify
casual configurations of risk variants. The maximum
number of causal variants within the configuration per
locus was based on the number of independent risk sig-
nals detectable per locus. This number of independent
risk signals per locus was estimated using the stepwise
model selection procedure implemented in GCTA-
COJO. Both the Finemap and GCTA-COJO40,41 tools
require linkage disequilibrium (LD) information for
their search and modeling. For this purpose, TOPMed
freeze5b samples of European ancestry, available from
dbGaP, were used as an LD reference panel. This panel
included 16,257 samples.

Browser Design
The GWAS locus browser is an R shiny application.

Data were precompiled and loaded onto the applica-
tion’s server and is not obtained from external data-
bases in real time. The GWAS locus browser is an
open-source project. The code is available on our
github (https://github.com/neurogenetics/GWAS_locus_
browser).

Results
Data Browser

The PD GWAS locus browser (https://pdgenetics.
shinyapps.io/GWASBrowser/) is an online platform

designed to assist researchers with the prioritization of
genes located within PD GWAS loci. It includes multi-
ple layers of data, including: GWAS statistic, eQTL,
burden, expression, constraint, and literature data and
a flexible scoring system that users may configure for
their own needs. Interestingly, several PD GWAS hits
show high correlation and overlap, R2 > 0.8 and
D0 > 0.9 (Supplementary Table 1), with other disease
risk signals including diseases such as inflammatory
bowel disease (locus 2),42,43 neuroticism (loci 29, 62,
69, and 73),44-46 body mass index (loci 4, 11, 61),47,48

and insomnia (locus 73).49 Below we describe 2 use
case scenarios on how this application could be used
for prioritizing genes from PD GWAS loci.

Use Case Scenario 1, Locus 16, rs11707416
A possible use case for the browser exists on locus

16 for the risk variant rs11707416. This variant was
discovered in the most recent PD risk GWAS (OR,
0.94; SE, 0.0097; P = 1.13 × 10−10),3 and the closest
gene is MED12L. The locus zoom plot showed a clear
GWAS signal for this region (Fig. 2A); however, no
genes in this locus were prioritized using current
methods in the PD risk GWAS. Using the default set-
tings, P2RY12 (purinergic receptor P2Y) has the
highest conclusion score (7) in the evidence per gene
table, meaning it has the highest sum of data set scores

FIG. 3. Bar plot for single-cell expression of P2RY12 on locus 16. Tran-
script per million (TPM) data for P2RY12 was averaged across all sam-
ples for 7 cell types from the substantia nigra. These include
oligodendrocyte progenitor cells (OPCs), oligodendrocyte cells (ODCs),
microglia, GABAergic neurons (GABA), endothelial cells, dopaminergic
neurons (DaNs), and astrocytes.
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for that locus. Locus compare eQTL plots showed some
correlation in both brain and blood, indicating some
overlap in the distribution of eQTL and GWAS data
for this gene (Fig. 2B). There is one common coding
variant at this locus, but it is located within MED12L
(mediator complex subunit 12-like; NM_053002:
exon25:c.G3629A:p.R1210Q) and not P2RY12.
MED12L has a lower conclusion score (3) than
P2RY12, suggesting that even with this coding variant,
MED12L is not the primary candidate in this locus.
This is a very complex and unusual locus, in that there
are multiple genes encoded within an intron of an iso-
form of MED12L (P2RY12, P2RY13, P2RY14,
GPR171), and even more interesting is that the mis-
sense variant that changes an amino acid of MED12L
is located in an intron of the much smaller gene,
P2RY12 (Fig. 2A). Despite the uniqueness of the locus
structure, we will focus on P2RY12 as the primary can-
didate nominated by the PD GWAS browser data sets.
Expression of P2RY12 was significant in all

included databases (GTEx brain, GTEx SN, and

single-cell dopaminergic neuron data). However, it
appears that P2RY12 has much higher expression in
astrocytes and microglia than neurons (Fig. 3). The
disease gene section shows that P2RY12 has been
linked to platelet type 8 bleeding disorder.50 This dis-
order appears to be caused by dominant-negative
mutations in the P2RY12 gene that disrupt the
homodimerization of the receptor that is required for
normal function.51 No direct links between P2RY12
and PD have been reported in the literature, but
P2RY12 is a widely studied gene with roles suggested
in neuroinflammation, apoptosis, and autophagy,
pathways that are relevant to PD and other neurode-
generative diseases.52-54 Experiments have been done
to characterize expression patterns of P2RY12 in
microglia and its role in neuroinflammation.55 As
these experiments focused on Alzheimer’s disease, it
would be useful to build on them in the PD context in
the future.
However, this is not conclusive evidence, and other

potential candidates exist on this locus. For example,

FIG. 4. Locus zoom and locus compare plots for locus 78 and variant rs2248244 and DYRK1A. (A) Locus zoom Manhattan plot for risk variant
rs2248244 at locus 78. The risk variant is uniquely colored purple, and all other variants are colored by their r2 value. Recombination rate peaks are
plotted in blue. Nearby genes are included at the bottom, with DYRK1A highlighted. (B) Locus compare plots for DYRK1A on locus 78 plot –log10P
values for Nalls et al (2019) GWAS data (y axis) and for different eQTL data sets (x axis). Data sets available for DYRK1A are Qi et al brain eQTL, Vosa
et al blood eQTL, and PsychENCODE brain isoQTL (left to right). Variants are colored by their r2 value, and the risk variant is labeled and uniquely col-
ored purple.
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SLENOT has a low conclusion score (2), partly
because of lack of data for the gene, but is suggested to
play a protective role in PD in the literature.56 Overall,
the possible role of P2RY12 in PD should be further
analyzed with functional experiments.

Use Case Scenario 2: Locus 78, rs2248244
We chose a second use case for the browser at locus

78 for the risk variant rs2248244. This variant was dis-
covered in the most recent PD risk GWAS (OR, 1.074;
SE, 0.0107; P = 2.74 × 10−11),3 and its nearest gene,

FIG. 5. GTEx violin plot for DYRK1A on locus 78. DYRK1A transcript per million (TPM) data were averaged across all available samples from GTEx v8
data for different tissues. Distribution and probability of expression level are included for each tissue.
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DYRK1A, was nominated as the causal gene in that
study. The locus zoom plot showed a clear GWAS sig-
nal for this region (Fig. 4A). The default settings in the
evidence per gene table nominated DYRK1A as the top
candidate with a conclusion score of 10, which is
higher than any of other genes within the locus (second
highest is 4).
The brain and blood eQTL plots and the isoQTL plot

showed good correlation between GWAS and QTL
values (Fig. 4B). No coding variants or other known
associated disease variants exist for this locus.
DYRK1A showed significant gene expression in all
databases (GTEx brain, GTEx SN, and single-cell dopa-
minergic neuron data; Fig. 5). Constraint data for
DYRK1A showed a low 90% CI for loss-of-function
variation and a pLI of 1, suggesting significant intoler-
ance to loss-of-function variation. However, burden test
results showed no significant change in variants for
DYRK1A after Bonferroni correction. FINEMAP
results of this locus nominated several variants with
rs2248244 and rs11701722, both intronic with the
highest probability score.
DYRK1A is located in the Down syndrome critical

region on chromosome 21, and various deletions and
single-nucleotide variants have been linked to
autosomal-dominant mental retardation-7 (MRD7).57-59

These data are not enough to conclude that DYRK1A is
the relevant risk gene at this locus. However, DYRK1A
also has significant representation in the PD literature.
Previous studies have suggested thatDYRK1A encodes a
kinase that can phosphorylate α-synuclein and Pink1 in
mammalian cells.60-63 Studies in mouse models have indi-
cated that haploinsufficiency of DYRK1A leads to a
reduction in dopaminergic neurons while increasing the
dosage results in more dopaminergic neurons by altering
apoptosis.60-62 All these studies combined indicate that
loss of DYRK1A expression may influence the number
of dopaminergic neurons and thereby the develop-
ment of PD.
Again, this is not conclusive, and other potential can-

didates exist at this locus. For example, TTC3 has sig-
nificant expression data and is suggested to play a role
in Alzheimer’s disease64 and Down syndrome65 in the
literature. Overall, the PD GWAS browser predicts
DYRK1A is a good candidate for more functional PD
experiments and high-powered human genetic studies
aimed at characterizing the molecular mechanism
underlying risk at this locus.

Discussion

GWASes have identified numerous risk loci for a large
number of diseases (https://www.ebi.ac.uk/gwas/).35 The

current bottleneck after completing these studies is iden-
tifying the causal genes and variants underlying the
GWAS signals. There is a large discrepancy between the
number of new GWAS loci identified and the number of
studies that molecularly characterize these loci to identify
a causative variant or gene. Currently, the number of PD
loci that are functionally validated is very low and
mostly includes genes that are known to cause mono-
genic forms of PD. PD GWASes have identified a num-
ber of these pleiotropic genes at various loci such as
SNCA (locus 23), GBA (locus 1), LRRK2 (locus 49),
and VPS13C (locus 59). Current evidence suggests that
TMEM175 (locus 1911), CTSB (locus 379,14) and
GCH1 (locus 5666) are also pleiotropic and lead to PD
by multiple mechanisms.
Our goal is to provide the PD research community

with a tool that catalogs all significant PD GWAS sig-
nals and helps to prioritize the genes at each locus for
functional studies. The overall significance score for
each gene is displayed in the “Conclusion” column of
the evidence table. This score is the sum of all other
numerical values from each data set for the respective
gene. The inclusion of genes 1 Mb up and downstream
of each variant is an arbitrary cutoff and may limit the
ability of the browser to accurately prioritize genes.
This limitation will come into effect when variants
affect genes outside this range; however, prior studies
have found that functional noncoding variants are often
located within this 2 Mb window. In addition, some
loci contain more than 1 significant variant (eg, locus
1, GBA with 3 reported independent signals), and until
a way to detect precise causative variants is developed,
it is assumed that all significant variants within the
same locus will impact the same gene.
Although all the data sets included in the PD browser

may contribute to the prioritization of PD genes, each
data set comes with its own limitations that should be
taken into account when considering the conclusion
value. Blood and brain eQTL data were included to
identify genes with similar GWAS and eQTL data dis-
tribution. Although similar distributions may suggest
causality, the power of these data sets may reduce their
importance. Blood eQTL data will have more statistical
power than brain data because of their larger sample
size, but may be less relevant to PD. Another important
note is that we just tested for cis eQTLs because we
simply did not have the power to detect robust trans-
QTLs. Scoring for the “QTL-brain” and “QTL-blood”
columns is not indicative of the causality of a gene
because it relies on the existence of eQTL data, not the
information provided by the data. Although the “QTL-
correl” column gives more insight into the eQTL data,
the default Pearson correlation coefficient cutoff signifi-
cance values of −0.3 and 0.3 are quite broad, so we
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have included an option to allow users to modify this
cutoff. In addition, eQTL data are not available for all
genes of interest. For these reasons, the correlation
between eQTL and GWAS data does not guarantee
causality for a gene, but is still good evidence for pri-
oritization. Gene expression data were included to
account for possible increased expression of genes
associated with GWAS variants in relevant cell types
and tissues. GTEx transcript per million (TPM) v8
data was used to measure gene expression. We focused
on brain tissue, SN tissue, and SN dopaminergic neu-
ron data because of their established role in PD and
enrichment in PD GWAS loci.3 However, genes do not
necessarily need to be expressed in the substantia nigra
or other brain tissues and cell types to increase the
risk of PD.
Constraint data were included to identify genes that

are intolerant to specific types of variation, suggesting
conservation. Therefore, we suspect genes with signifi-
cant intolerance may be causal because normal variation
in these genes is unlikely. We used a significance cutoff
of 0.35 for the upper limit of the 90% confidence inter-
val of the observed/expected values, as suggested by
gnomAD.29 It is possible that variations within genes
may not be associated with PD, suggesting that low
intolerance/constraint scores are not necessarily causal.
Previously published burden test results were included to
account for genes thought to have a significant burden
of rare variants in PD.3 However, this does not guaran-
tee causality because causal genes may be tagged by
common variants instead. The literature count was
included to quickly measure the significance of genes in
previously published research. However, existing studies
can easily be biased, and our automated search of the lit-
erature does not account for this. In addition, some
genes are difficult to identify in automated literature
searches because of nomenclature changing over time or
their similarity to common names. Examples of these
name complications include SHE and MAL (sometimes
used for “mean axonal length” instead of the gene
encoding “myelin and lymphocyte protein”).
Overall, for approximately half of all PD GWAS loci,

an educated guess can be made based on the data
included in our browser to choose the most likely can-
didate gene underlying the GWAS risk signal. Some loci
have no obvious candidate (eg, loci 34, 50, and 74),
but our browser may still help to prioritize candidate
genes with the help of additional specific reference data.
It should also be noted that there is not a “one-fits-all”
efficient scoring system for the prioritization of genes
under GWAS peaks. In addition, each included data set
has clear limitations as discussed above. Therefore, we
included a weight option for each data column in the
evidence table. This will allow users to assign weights
(0–4, with 0 for no points and 4 for 4 points) to differ-
ent columns to alter the significance of the data in the

final conclusion summation based on the data sets they
deem most important.
In summary, we have presented an online platform

that allows for prioritization of genes within PD GWAS
loci. We have highlighted 2 examples (P2RY12 and
DYRK1A), but many other interesting gene candidates
can be identified using this application. The platform is
designed to be versatile, flexible, and easily expandable
when more loci or data sets of interest become avail-
able. By using this platform, GWAS follow-up studies
can systematically prioritize genes based on publicly
available data sets that may help to improve the design
of functional experiments. In turn, this workflow could
help to nominate these genes as potential therapeutic
targets worthy of translating to the clinic.
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