165 research outputs found

    Rab4b Is a Small GTPase Involved in the Control of the Glucose Transporter GLUT4 Localization in Adipocyte

    Get PDF
    Endosomal small GTPases of the Rab family, among them Rab4a, play an essential role in the control of the glucose transporter GLUT4 trafficking, which is essential for insulin-mediated glucose uptake. We found that adipocytes also expressed Rab4b and we observed a consistent decrease in the expression of Rab4b mRNA in human and mice adipose tissue in obese diabetic states. These results led us to study this poorly characterized Rab member and its potential role in glucose transport.We used 3T3-L1 adipocytes to study by imaging approaches the localization of Rab4b and to determine the consequence of its down regulation on glucose uptake and endogenous GLUT4 location. We found that Rab4b was localized in endosomal structures in preadipocytes whereas in adipocytes it was localized in GLUT4 and in VAMP2-positive compartments, and also in endosomal compartments containing the transferrin receptor (TfR). When Rab4b expression was decreased with specific siRNAs by two fold, an extent similar to its decrease in obese diabetic subjects, we observed a small increase (25%) in basal deoxyglucose uptake and a more sustained increase (40%) in presence of submaximal and maximal insulin concentrations. This increase occurred without any change in GLUT4 and GLUT1 expression levels and in the insulin signaling pathways. Concomitantly, GLUT4 but not TfR amounts were increased at the plasma membrane of basal and insulin-stimulated adipocytes. GLUT4 seemed to be targeted towards its non-endosomal sequestration compartment.Taken our results together, we conclude that Rab4b is a new important player in the control of GLUT4 trafficking in adipocytes and speculate that difference in its expression in obese diabetic states could act as a compensatory effect to minimize the glucose transport defect in their adipocytes

    Linking bayesian belief networks and GIS to assess the ecosystem integrity in the brazilian Amazon.

    Get PDF
    Deforestation and climate change heavily impact the ecosystem of the Amazon rainforest threatening its resilience and the sustainability of many human activities. Land protection may prevent ecosystems and their services to deteriorate from the pressures of agricultural expansion, population growth and wood harvesting. In the Brazilian Amazon land protection occurs in several forms such as environmental conservation, setting biodiversity priority areas and the delineation of indigenous lands. Still, the effects are not clear as understanding of the ecosystems is incomplete and responses to human actions are highly uncertain. Bayesian Belief Networks (BBN) are models that probabilistically represent correlative and causal relationships among variables. BBNs have been successfully applied to natural resource management to address environmental management problems and to assess the impact of alternative management measures. By training the probabilistic relationships using field data, Remote Sensing data and GIS data the BBN can provide information on the ecosystems: the ecosystem integrity and their likely response to climate change or alternative management actions. An increasing number of studies train and apply BBNs with evidence originating from GIS data; a cumbersome and error prone soft-linking method requiring manual conversion of data files between the BBN and GIS software systems. This paper presents the full integration of a BBN software system within an existing GIS based Discussion Support System (DSS) illustrated by the case of the ecosystem integrity of the Brazilian amazon. The full integration speeds up the processing and thereby allows doing multiple runs within a short period of time such as a stakeholder workshop. Each consecutive run is based upon insights from a previous one. Furthermore, the DSS provides the management of different options, visualize spatial summaries and trade-offs between different impact indicators and see regional differences

    Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure Valsartan heart failure trial (Val-HeFT) echocardiographic data

    Get PDF
    AbstractObjectivesThe objective of this study was to test the hypothesis that the severity of left ventricular remodeling predicts the response to treatment and outcomes in chronic heart failure.BackgroundReversal of remodeling should produce the most favorable outcome in patients with the most severe remodeling.MethodsIn 5,010 heart failure patients on background therapy and randomized to valsartan and placebo, serial recordings of left ventricular internal diastolic diameter (LVIDd) and ejection fraction (EF) were read at sites that had to meet qualifying standards before participating. Baseline LVIDd and EF were pooled across treatments and retrospectively grouped by quartiles Q1 to Q4, representing best to worst. Kaplan-Meier survival curves were obtained by the log-rank test. Q1 was compared with Q4 for mortality and combined mortality and morbidity (M + M) from Cox regression risk ratios (RRs). Valsartan versus placebo changes from baseline in LVIDd and EF were analyzed by quartiles from analysis of covariance. Valsartan and placebo were compared by RRs for M + M.ResultsSurvival rates were greater in the better quartiles for LVIDd and EF (p < 0.00001). The RR for Q1 versus Q4 in events approached 0.5 for both LVIDd and EF (p < 0.0001). An LVIDd decrease and EF increase were quartile-dependent and greater with valsartan than placebo at virtually all time points. The RR for M + M outcomes favored valsartan in the worse quartiles.ConclusionsStratification by baseline severity of remodeling showed that patients with worse LVIDd and EF are at highest risk for an event, yet appear to gain the most anti-remodeling effect and clinical benefit with valsartan treatment

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Agrarisch natuurbeheer, potenties buiten de Ecologische Hoofdstructuur

    Get PDF
    Voor een aantal soortgroepen (vleermuizen, vissen, amfibieën, reptielen, vlinders, zweefvliegen, libellen, sprinkhanen, paddenstoelen) is verkend wat de mogelijkheden voor agrarisch natuurbeheer zijn om het duurzaam voortbestaan in Nederland te versterken. Daarbij is vooral gekeken naar de doelsoorten van natuurdoeltypen, soorten waarvan wordt ingeschat dat agrarisch natuurbeheer relevant kan zijn en soorten waarvoor Nederland een internationale verantwoordelijkheid heeft (VHRsoorten). Als eerste aangrijpingspunt is in beeld gebracht welk deel van de soortengroepen zich buiten de EHS bevindt, welk deel in de randzone en welk deel binnen de EHS. Voor de verschillende soortengroepen is in de vorm van een quick scan een overzicht gemaakt van maatregelen binnen het agrarisch bedrijf die een duurzaam voortbestaan kunnen ondersteunen. De resultaten kunnen worden gebruikt bij de onderbouwing van het nieuwe stelsel voor agrarisch natuurbeheer zoals dat door het ministerie van EZ en de provincies wordt voorbereid. Eerder werd vergelijkbaar onderzoek gedaan aan vogels en plantensoorten (Melman et al., 2013)

    Helicobacter pylori Counteracts the Apoptotic Action of Its VacA Toxin by Injecting the CagA Protein into Gastric Epithelial Cells

    Get PDF
    Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host
    • …
    corecore