11 research outputs found
Microfluidic analysis techniques for safety assessment of pharmaceutical nano- and microsystems
This chapter reviews the evolution of microfabrication methods and materials, applicable to manufacturing of micro total analysis systems (or lab‐on‐a‐chip), from a general perspective. It discusses the possibilities and limitations associated with microfluidic cell culturing, or so called organ‐on‐a‐chip technology, together with selected examples of their exploitation to characterization of pharmaceutical nano‐ and microsystems. Materials selection plays a pivotal role in terms of ensuring the cell adhesion and viability as well as defining the prevailing culture conditions inside the microfluidic channels. The chapter focuses on the hepatic safety assessment of nanoparticles and gives an overview of the development of microfluidic immobilized enzyme reactors that could facilitate examination of the hepatic effects of nanomedicines under physiologically relevant conditions. It also provides an overview of the future prospects regarding system‐level integration possibilities facilitated by microfabrication of miniaturized separation and sample preparation systems as integral parts of microfluidic in vitro models.Non peer reviewe
Lipid-coated silica nanoparticles for biomedical applications
Silica particles as a nanoparticulate carrier material for contrast agents have received considerable attention the past few years, since the material holds great promise for biomedical applications. A key feature for successful application of this material in vivo is biocompatibility, which may be significantly improved by appropriate surface modification. In this study we report a novel strategy to coat silica particles with a dense monolayer of paramagnetic and PEGylated lipids. The silica nanoparticles carry a quantum dot in their centre and are made target-specific by the conjugation of multiple (alpha)v(beta)3-specifc RGD-peptides. We demonstrate their specific uptake by endothelial cells in vitro using fluorescence microscopy, quantitative fluorescence imaging and magnetic resonance imaging. The lipid coated silica particles introduced here represent a new platform for nanoparticulate multimodality contrast agents
On estimating frequency moments of data streams
Abstract. Space-economical estimation of the pth frequency moments, defined as Fp = P n i=1 |fi|p, for p> 0, are of interest in estimating all-pairs distances in a large data matrix [14], machine learning, and in data stream computation. Random sketches formed by the inner product of the frequency vector f1,..., fn with a suitably chosen random vector were pioneered by Alon, Ma-tias and Szegedy [1], and have since played a central role in estimating Fp and for data stream computations in general. The concept of p-stable sketches formed by the inner product of the frequency vector with a random vector whose components are drawn from a p-stable distribution, was proposed by Indyk [11] for estimating Fp, for 0 < p < 2, and has been further studied in Li [13]. In this paper, we consider the problem of estimating Fp, for 0 < p < 2. A disadvantage of the sta-ble sketches technique and its variants is that they require O ( 1 ɛ 2) inner-products of the frequency vector with dense vectors of stable (or nearly stable [14, 13]) random variables to be maintained. This means that each stream update can be quite time-consuming. We present algorithms for esti-mating Fp, for 0 < p < 2, that does not require the use of stable sketches or its approximations. Our technique is elementary in nature, in that, it uses simple randomization in conjunction with well-known summary structures for data streams, such as the COUNT-MIN sketch [7] and the COUNTSKETCH structure [5]. Our algorithms require space 1 ± ɛ factors and requires expected time O(log F1 log 1 δ Õ ( 1 ɛ 2+p) 3 to estimate Fp to within) to process each update. Thus, our tech-nique trades an O ( 1 ɛ p) factor in space for much more efficient processing of stream updates. We also present a stand-alone iterative estimator for F1.
Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation
Silica is a promising carrier material for nanoparticle-facilitated drug delivery, gene therapy, and molecular imaging. Understanding of their pharmacokinetics is important to resolve bioapplicability issues. Here we report an extensive study on bare and lipid-coated silica nanoparticles in mice. Results obtained by use of a wide variety of techniques (fluorescence imaging, inductively coupled plasma mass spectrometry, magnetic resonance imaging, confocal laser scanning microscopy, and transmission electron microscopy) showed that the lipid coating, which enables straightforward functionalization and introduction of multiple properties, increases bioapplicability and improves pharmacokinetics
A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging
An important challenge in medical diagnostics is to design all-in-one contrast agents that can be detected with multiple techniques such as magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission tomography (PET), single photon emission tomography (SPECT) or fluorescence imaging (FI). Although many dual labeled agents have been proposed, mainly for combined MRI/FI, constructs for three imaging modalities are scarce. Here gold/silica nanoparticles with a poly(ethylene glycol), paramagnetic and fluorescent lipid coating were synthesized, characterized and applied as trimodal contrast agents to allow for nanoparticle-enhanced imaging of macrophage cells in vitro via MRI, CT and FI, and mice livers in vivo via MRI and CT. This agent can be a useful tool in a multitude of applications, including cell tracking and target-specific molecular imaging, and is a step in the direction of truly multi-modal imagin
Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging
Silica particles as a nanoparticulate carrier material for contrast agents have received considerable attention the past few years, since the material holds great promise for biomedical applications. A key feature for successful application of this material in vivo is biocompatibility, which may be significantly improved by appropriate surface modification. In this study, we report a novel strategy to coat silica particles with a dense monolayer of paramagnetic and PEGylated lipids. The silica nanoparticles carry a quantum dot in their center and are made target-specific by the conjugation of multiple αvβ3-integrin-specific RGD-peptides. We demonstrate their specific uptake by endothelial cells in vitro using fluorescence microscopy, quantitative fluorescence imaging, and magnetic resonance imaging. The lipid-coated silica particles introduced here represent a new platform for nanoparticulate multimodality contrast agent
Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Förster Resonance Energy Transfer
The study of lipoproteins, natural nanoparticles comprised of lipids and apolipoproteins that transport fats throughout the body, is of key importance to better understand, treat, and prevent cardiovascular disease. In the current study, we have developed a lipoprotein-based nanoparticle that consists of a quantum dot (QD) core and Cy5.5 labeled lipidic coating. The methodology allows judicious tuning of the QD/Cy5.5 ratio, which enabled us to optimize Frster resonance energy transfer (FRET) between the QD core and the Cy5.5-labeled coating. This phenomenon allowed us to study lipoprotein−lipoprotein interactions, lipid exchange dynamics, and the influence of apolipoproteins on these processes. Moreover, we were able to study HDL-cell interactions and exploit FRET to visualize HDL association with live macrophage cells
Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level
Low-density lipoprotein (LDL) plays a critical role in cholesterol transport and is closely linked to the progression of several diseases. This motivates the development of methods to study LDL behavior from the microscopic to whole-body level. We have developed an approach to efficiently load LDL with a range of diagnostically active nanocrystals or hydrophobic agents. We performed focused experiments on LDL labeled with gold nanocrystals (Au-LDL). The labeling procedure had minimal effect on LDL size, morphology, or composition. Biological function was found to be maintained from both in vitro and in vivo experiments. Tumor-bearing mice were injected intravenously with LDL, DiR-LDL, Au-LDL, or a gold-loaded nanoemulsion. LDL accumulation in the tumors was detected with whole-body imaging methods, such as computed tomography (CT), spectral CT, and fluorescence imaging. Cellular localization was studied with transmission electron microscopy and fluorescence techniques. This LDL labeling procedure should permit the study of lipoprotein biointeractions in unprecedented detai
