8,317 research outputs found

    Modeling the physical properties in the ISM of the low-metallicity galaxy NGC4214

    Full text link
    We present a model for the interstellar medium of NGC4214 with the objective to probe the physical conditions in the two main star-forming regions and their connection with the star formation activity of the galaxy. We used the spectral synthesis code Cloudy to model an HII region and the associated photodissociation region (PDR) to reproduce the emission of mid- and far-infrared fine-structure cooling lines from the Spitzer and Herschel space telescopes for these two regions. Input parameters of the model, such as elemental abundances and star formation history, are guided by earlier studies of the galaxy, and we investigated the effect of the mode in which star formation takes place (bursty or continuous) on the line emission. Furthermore, we tested the effect of adding pressure support with magnetic fields and turbulence on the line predictions. We find that this model can satisfactorily predict (within a factor of ~2) all observed lines that originate from the ionized medium ([SIV] 10.5um, [NeIII] 15.6um, [SIII] 18.7um, [SIII] 33.5um, and [OIII] 88um), with the exception of [NeII] 12.8um and [NII] 122um, which may arise from a lower ionization medium. In the PDR, the [OI] 63um, [OI] 145um, and [CII] 157um lines are matched within a factor of ~5 and work better when weak pressure support is added to the thermal pressure or when the PDR clouds are placed farther away from the HII regions and have covering factors lower than unity. Our models of the HII region agree with different evolutionary stages found in previous studies, with a more evolved, diffuse central region, and a younger, more compact southern region. However, the local PDR conditions are averaged out on the 175 pc scales that we probe and do not reflect differences observed in the star formation properties of the two regions.Comment: accepted for publication in A&

    Physical conditions in the gas phases of the giant HII region LMC-N11 unveiled by Herschel - I. Diffuse [CII] and [OIII] emission in LMC-N11B

    Full text link
    (Abridged) The Magellanic Clouds provide a nearby laboratory for metal-poor dwarf galaxies. The low dust abundance enhances the penetration of UV photons into the interstellar medium (ISM), resulting in a relatively larger filling factor of the ionized gas. Furthermore, there is likely a hidden molecular gas reservoir probed by the [CII]157um line. We present Herschel/PACS maps in several tracers, [CII], [OI]63um,145um, [NII]122um, [NIII]57um, and [OIII]88um in the HII region N11B in the Large Magellanic Cloud. Halpha and [OIII]5007A images were used as complementary data to investigate the effect of dust extinction. Observations were interpreted with photoionization models to infer the gas conditions and estimate the ionized gas contribution to the [CII] emission. Photodissociation regions (PDRs) are probed through polycyclic aromatic hydrocarbons (PAHs). We first study the distribution and properties of the ionized gas. We then constrain the origin of [CII]157um by comparing to tracers of the low-excitation ionized gas and of PDRs. [OIII] is dominated by extended emission from the high-excitation diffuse ionized gas; it is the brightest far-infrared line, ~4 times brighter than [CII]. The extent of the [OIII] emission suggests that the medium is rather fragmented, allowing far-UV photons to permeate into the ISM to scales of >30pc. Furthermore, by comparing [CII] with [NII], we find that 95% of [CII] arises in PDRs, except toward the stellar cluster for which as much as 15% could arise in the ionized gas. We find a remarkable correlation between [CII]+[OI] and PAH emission, with [CII] dominating the cooling in diffuse PDRs and [OI] dominating in the densest PDRs. The combination of [CII] and [OI] provides a proxy for the total gas cooling in PDRs. Our results suggest that PAH emission describes better the PDR gas heating as compared to the total infrared emission.Comment: Accepted for publication in Astronomy and Astrophysics. Fixed inverted line ratio in Sect. 5.

    The effects of star formation on the low-metallicity ISM: NGC4214 mapped with Herschel/PACS spectroscopy

    Full text link
    We present Herschel/PACS spectroscopic maps of the dwarf galaxy NC4214 observed in 6 far infrared fine-structure lines: [C II] 158mu, [O III] 88mu, [O I] 63mu, [O I] 146mu, [N II] 122mu, and [N II] 205mu. The maps are sampled to the full telescope spatial resolution and reveal unprecedented detail on ~ 150 pc size scales. We detect [C II] emission over the whole mapped area, [O III] being the most luminous FIR line. The ratio of [O III]/[C II] peaks at about 2 toward the sites of massive star formation, higher than ratios seen in dusty starburst galaxies. The [C II]/CO ratios are 20 000 to 70 000 toward the 2 massive clusters, which are at least an order of magnitude larger than spiral or dusty starbursts, and cannot be reconciled with single-slab PDR models. Toward the 2 massive star-forming regions, we find that L[CII] is 0.5 to 0.8% of the LTIR . All of the lines together contribute up to 2% of LTIR . These extreme findings are a consequence of the lower metallicity and young, massive-star formation commonly found in dwarf galaxies. These conditions promote large-scale photodissociation into the molecular reservoir, which is evident in the FIR line ratios. This illustrates the necessity to move to multiphase models applicable to star-forming clusters or galaxies as a whole.Comment: Accepted for publication in the A&A Herschel Special Issu

    A Survey of Atomic Carbon [C I] in High-redshift Main-Sequence Galaxies

    Full text link
    We present the first results of an ALMA survey of the lower fine structure line of atomic carbon [C I](^3P_1\,-\,^{3}P_0) in far infrared-selected galaxies on the main sequence at z1.2z\sim1.2 in the COSMOS field. We compare our sample with a comprehensive compilation of data available in the literature for local and high-redshift starbursting systems and quasars. We show that the [C I](3P1^3P_1\rightarrow3P0^3P_0) luminosity correlates on global scales with the infrared luminosity LIRL_{\rm IR} similarly to low-JJ CO transitions. We report a systematic variation of L'_{\rm [C\,I]^3P_1\,-\, ^3P_0}/LIRL_{\rm IR} as a function of the galaxy type, with the ratio being larger for main-sequence galaxies than for starbursts and sub-millimeter galaxies at fixed LIRL_{\rm IR}. The L'_{\rm [C\,I]^3P_1\,-\, ^3P_0}/LCO(21)L'_{\rm CO(2-1)} and M[CI]M_{\rm{[C I]}}/MdustM_{\rm dust} mass ratios are similar for main-sequence galaxies and for local and high-redshift starbursts within a 0.2 dex intrinsic scatter, suggesting that [C I] is a good tracer of molecular gas mass as CO and dust. We derive a fraction of f[CI]=M[CI]/MC313f_{\rm{[C\,I]}} = M_{\rm{[C\,I]}} / M_{\rm{C}}\sim3-13% of the total carbon mass in the atomic neutral phase. Moreover, we estimate the neutral atomic carbon abundance, the fundamental ingredient to calibrate [C I] as a gas tracer, by comparing L'_{\rm [C\,I]^3P_1\,-\, ^3P_0} and available gas masses from CO lines and dust emission. We find lower [C I] abundances in main-sequence galaxies than in starbursting systems and sub-millimeter galaxies, as a consequence of the canonical αCO\alpha_{\rm CO} and gas-to-dust conversion factors. This argues against the application to different galaxy populations of a universal standard [C I] abundance derived from highly biased samples.Comment: 14 pages + Appendix. Accepted for publication in ApJ. All the data tables in Appendix will be also released in electronic forma

    A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHC Energies

    Get PDF
    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at s=5.5\sqrt{s}=5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of 30\sim30%.Comment: 13 pages, 7 figure

    Post-allergen challenge inhibition of poly(ADP-ribose) polymerase harbors therapeutic potential for treatment of allergic airway inflammation

    Get PDF
    Background: Identifying therapeutic drugs that block the release or effects of T-helper type 2 (Th2) cytokines after allergen exposure is an important goal for the treatment of allergic inflammatory diseases including asthma. We recently showed, using a murine model of allergic airway inflammation, that poly(ADP-ribose) polymerase (PARP) plays an important role in the pathogenesis of asthma-related lung inflammation. PARP inhibition, by single injection of a novel inhibitor, thieno[2,3-c]isoquinolin-5-one (TIQ-A), before ovalbumin (OVA) challenge, prevented airway eosinophilia in C57BL/6 mice with concomitant suppression of Th2 cytokine production and mucus secretion. Objective: To evaluate the efficacy of the drug when it is given after OVA challenge for its possible therapeutic potential. Methods: This study was conducted using a murine model of allergic airway inflammation. Results: A single injection of TIQ-A (6 mg/kg) one or 6 h post-allergen challenge conferred similar reduction in OVA challenge-induced eosinophilia. More significantly, post-allergen challenge administration of the drug exerted even better suppression on the production of IL-4, IL-5, IL-13, and IgE and prevented airway hyperresponsiveness to inhaled-methacholine. The significant decrease in IL-13 was accompanied by a complete absence of airways mucus production indicating a potential protection against allergen-induced airway remodelling. Conclusion: The coincidence of the inflammation trigger and the time of drug administration appear to be important for the drug\u27s more pronounced protection. The observed time window for efficacy, 1 or 6 h after allergen challenge may be of great clinical interest. These findings may provide a novel therapeutic strategy for the treatment of allergic airway inflammation, including asthma. © 2008 The Authors

    On the gravitational production of superheavy dark matter

    Get PDF
    The dark matter in the universe can be in the form of a superheavy matter species (WIMPZILLA). Several mechanisms have been proposed for the production of WIMPZILLA particles during or immediately following the inflationary epoch. Perhaps the most attractive mechanism is through gravitational particle production, where particles are produced simply as a result of the expansion of the universe. In this paper we present a detailed numerical calculation of WIMPZILLA gravitational production in hybrid-inflation models and natural-inflation models. Generalizing these findings, we also explore the dependence of the gravitational production mechanism on various models of inflation. We show that superheavy dark matter production seems to be robust, with Omega_X h^2 ~ (M_X / (10^11 GeV))^2 (T_RH / (10^9 GeV)), so long as M_X < H_I, where M_X is the WIMPZILLA mass, T_RH is the reheat temperature, and H_I is the expansion rate of the universe during inflation.Comment: 26 pages, 7 figures; LaTeX; submitted to Physical Review D; minor typographical error correcte

    Gas-to-Dust mass ratios in local galaxies over a 2 dex metallicity range

    Get PDF
    This paper analyses the behaviour of the gas-to-dust mass ratio (G/D) of local Universe galaxies over a large metallicity range. We combine three samples: the Dwarf Galaxy Survey, the KINGFISH survey and a subsample from Galametz et al. (2011) totalling 126 galaxies, covering a 2 dex metallicity range, with 30% of the sample with 12+log(O/H) < 8.0. The dust masses are homogeneously determined with a semi-empirical dust model, including submm constraints. The atomic and molecular gas masses are compiled from the literature. Two XCO are used to estimate molecular gas masses: the Galactic XCO, and a XCO depending on the metallicity (as Z^{-2}). Correlations with morphological types, stellar masses, star formation rates and specific star formation rates are discussed. The trend between G/D and metallicity is empirically modelled using power-laws (slope of -1 and free) and a broken power-law. We compare the evolution of the G/D with predictions from chemical evolution models. We find that out of the five tested galactic parameters, metallicity is the galactic property driving the observed G/D. The G/D versus metallicity relation cannot be represented by a power-law with a slope of -1 over the whole metallicity range. The observed trend is steeper for metallicities lower than ~ 8.0. A large scatter is observed in the G/D for a given metallicity, with a dispersion of 0.37 dex in metallicity bins of ~0.1 dex. The broken power-law reproduces best the observed G/D and provides estimates of the G/D that are accurate to a factor of 1.6. The good agreement of the G/D and its scatter with the three tested chemical evolution models shows that the scatter is intrinsic to galactic properties, reflecting the different star formation histories, dust destruction efficiencies, dust grain size distributions and chemical compositions across the sample. (abriged)Comment: 23 pages, 12 figures, accepted in Astronomy & Astrophysic

    The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51

    Full text link
    We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the "luminosity gap" between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.Comment: 7 pages, 5 figures, ApJL accepte

    Early-life exposure to combustion-derived particulate matter causes pulmonary immunosuppression

    Get PDF
    Elevated levels of combustion-derived particulate matter (CDPM) are a risk factor for the development of lung diseases such as asthma. Studies have shown that CDPM exacerbates asthma, inducing acute lung dysfunction and inflammation; however, the impact of CDPM exposure on early immunological responses to allergens remains unclear. To determine the effects of early-lifeCDPMexposure on allergic asthma development in infants, we exposed infant mice to CDPM and then induced a mouse model of asthma using house dust mite (HDM) allergen. Mice exposed to CDPMHDM failed to develop a typical asthma phenotype including airway hyper-responsiveness, T-helper type 2 (Th2) inflammation, Muc5ac expression, eosinophilia, and HDM-specific immunoglobulin (Ig) compared with HDM-exposed mice. Although HDM-specific IgE was attenuated, total IgE was twofold higher in CDPMHDM mice compared with HDM mice. We further demonstrate that CDPM exposure during early life induced an immunosuppressive environment in the lung, concurrent with increases in tolerogenic dendritic cells and regulatory T cells, resulting in the suppression of Th2 responses. Despite having early immunosuppression, these mice develop severe allergic inflammation when challenged with allergen as adults. These findings demonstrate a mechanism whereby CDPM exposure modulates adaptive immunity, inducing specific antigen tolerance while amplifying total IgE, and leading to a predisposition to develop asthma upon rechallenge later in life. © 2014 Society for Mucosal Immunology
    corecore