44 research outputs found

    Density-dependence of reproductive success in a Houbara bustard population

    Get PDF
    Although density-dependent processes and their impacts on population dynamics are key issues in ecology and conservation biology, empirical evidence of density-dependence remains scarce for species or populations with low densities, scattered distributions, and especially for managed populations where densities may vary as a result of extrinsic factors (such as harvesting or releases). Here, we explore the presence of density-dependent processes in a reinforced population of North African Houbara bustard (Chlamydotis undulata undulata). We investigated the relationship between reproductive success and local density, and the possible variation of this relationship according to habitat suitability using three independent datasets. Based on eight years of nests monitoring (more than 7000 nests), we modeled the Daily Nest Survival Rate (DNSR) as a proxy of reproductive success. Our results indicate that DNSR was negatively impacted by local densities and that this relationship was approximately constant in space and time: (1) although DNSR strongly decreased over the breeding season, the negative relationship between DNSR and density remained constant over the breeding season; (2) this density-dependent relationship did not vary with the quality of the habitat associated with the nest location. Previous studies have shown that the demographic parameters and population dynamics of the reinforced North African Houbara bustard are strongly influenced by extrinsic environmental and management parameters. Our study further indicates the existence of density-dependent regulation in a low-density, managed population.The study was funded by Emirates Center for Wildlife Propagation (ECWP, Morocco), a project of the International Fund for Houbara Conservation (IFHC, United Arab Emirates)

    In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice

    Get PDF
    Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b+ F4/80+ MHC-II+ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS+ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-Îł molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis

    Species Distribution Models predict abundance and its temporal variation in a steppe bird population

    Get PDF
    Habitat Suitability Index (HSI) derived from Species Distribution Model (SDM) has been used to infer or predict local demographic properties such as abundance for many species. Across species studied, HSI has either been presented as a poor predictor of abundance or as a predictor of potential rather than realized abundance. The main explanation of the lack of relationship between HSI and abundance is that the local abundance of a species varies in time due to various ecological processes that are not integrated into correlative SDM. To better understand the HSI-abundance relationship, in addition to the study of the association between HSI and mean abundance, we explored its variation over time. We used data from 10-years monitoring of a Houbara bustard (Chlamydotis undulata undulata) population in Morocco. From various occurrence data we modelled the HSI. From (independent) count data we calculated four local abundance indices: mean abundance, maximum abundance, the temporal trend of abundance and the coefficient of variation of abundance over the study period. We explored the relationship between HSI and abundance indices using linear, polynomial and quantile regressions. We found a triangular relationship between local abundance (mean and maximum) and HSI, indicating that the upper limit of mean and maximum abundance increased with HSI. Our results also indicate that sites with the highest HSI were associated with least variation in local abundance, the highest variation being observed at intermediate HSI. Our results provide new empirical evidence supporting the generalization of the triangular relationship between HSI and abundance. Overall, our results support the hypothesis that HSI obtained from SDMs can reflect the local abundance potentialities of a species and emphasize the importance of investigating this relationship using temporal variation in abundance

    Bistatic, Soundings with the HF GPR TAPIR in the Egyptian Western Desert.

    No full text
    The TAPIR HF GPR has been initially developed to perform deep soundings on Mars in the frame of the NETLANDER mission. In November 2006, an updated version of the instrument working either in monostatic or in bistatic mode was tested in the Egytian White Desert. Preliminary results are presented

    Bistatic GPR Measurements in the Egyptian Western Desert - Measured and Simulated data.

    No full text
    The TAPIR (Terrestrial And Planetary Investigation Radar) instrument has been designed at CETP (Centre d'etude des Environnements Terrestre et Planetaires) to explore the deep Martian subsurface (down to a few kilometers) and to detect liquid water reservoirs. TAPIR is an impulse ground penetrating radar operating at central frequencies ranging from 2 to 4 MHz operating from the surface. In November 2005, an updated version of the instrument working either in monostatic or in bi-static mode was tested in the Egyptian Western Desert. The work presented here focuses on the bi-static measurements performed on the Abou Saied plateau which shows a horizontally layered sub-surface. The electromagnetic signal was transmitted using one of the two orthogonal 70 m loaded electrical dipole antennas of the transmitting GPR. A second GPR, 50 or 100 meters apart, was dedicated to the signal reception. The received waves were characterized by a set of 5 measurements performed on the receiving GPR : the two horizontal components of the electric field and the three composants of the magnetic field. They were used to compute the direction of arrival of the incoming waves and to retrieve more accurately their propagation path and especially to discriminate between waves due to some sub-surface reflecting structure and those due to interaction with the surface clutter. A very efficient synchronization between the two radars enabled us to perform coherent additions up to 231 which improves dramatically the obtained signal to noise ratio. Complementary electromagnetic measurements were conducted on the same site by the LPI (Lunar and Planetary Institute) and the SwRI (Southwest Research Institute). They provided independent information which helped the interpretation of the TAPIR data. Accurate simulations obtained by FDTD taking into account the information available are presented and used for both the interpretation of the measured data and the validation of the instrument

    Högskolepedagogisk debatt : tema: kvalitetsutvÀrdering av högre utbildning

    No full text
    I nuvarande temanummer kring kvalitetsutvÀrdering av högre utbildning har vi fokuserat pÄ nÄgot som har varit aktuellt inom högskolevÀrlden under en lÀngre tid, och som i samband med stundande riksdagsval sÀkert Äterigen kommer att bli föremÄl för tuff debatt. Det nationella kvalitetsutvÀrderingssystemet Àr en stor och komplex frÄga och det pÄverkar i vilken riktning högre utbildning i Sverige rör sig. I detta nummer kommer ni att kunna lÀsa om en rad olika erfarenheter av utvÀrderingssystemet. HÀr finns röster frÄn flera hÄll inom HKR med ett brett perspektivspektrum pÄ temat

    Bistatic sounding of the deep subsurface with a Ground Penetrating Radar-Experimental validation

    No full text
    International audienceEISS (Electromagnetic Investigation of the Sub-Surface) is a Ground Penetrating Radar (GPR) operating at very low frequencies in the HF range (2–4 MHz) that was designed to investigate the composition and structure of the Martian subsurface to depths of ~1 km. EISS can operate in both a monostatic and bistatic configuration, the latter being made possible by the simultaneous operation of two separate instrument platforms. The first, a fixed lander, utilizes one surface-deployed dipole antenna made of two 35 m-long resistively-loaded monopoles to transmit radar pulses into the subsurface. Echoes from subsurface reflectors are then received by either similar electrical receiving antennas (on the lander), or by a much smaller magnetic sensor that can be mounted either on the lander or on a mobile platform, such as a rover.In this paper, we report on the successful test of EISS bistatic mode of operation during a field campaign in the West Egyptian desert. From the analysis of the measured propagation delays, the dielectric constant and the depth of several reflecting subsurface interfaces were retrieved. Up to 226 coherent additions (or stacking) were performed resulting in the detection of buried interfaces and in particular of the Nubian Aquifer at a depth >200 m. The results obtained with the small magnetic sensor were consistent with those obtained with the electrical antennas, suggesting that such an experiment can meet the constraints of a space mission

    Imaging the Antarctic Ice Sheet Subsurface with the HF GPR TAPIR

    No full text
    An HF impulse polarimetric Ground Penetrating Radar (GPR) operating at very low frequencies (ranging from ~2 to 8MHz) has been developed in the frame of the NetLander mission. This instrument, named TAPIR (Terrestrial And Planetary Investigation by Radar), was designed to probe the Martian subsurface down to kilometric depth and search for potential water reservoirs. Although the NetLander mission was cancelled in 2003, the interest on the exploration of Martian subsurface was recently enhanced by the promising observations of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board of the ESA Mars Express orbiter. In particular, MARSIS detected the base of the North Polar Layered Deposits, penetrating up to ~1.8km the ice-rich upper layer of the underground. Such results suggest that TAPIR, which operates in the same frequency range as MARSIS and can performed a higher number of coherent integrations, is able to reach deeper structures. Yet, in contrast with classical GPRs, TAPIR can not move onto the surface and thus won't provide 2D or 3D scan of the subsurface. To retrieve, in spite of this NetLander restraint, the 3D distribution of the reflecting facets of the underground, the instrument was equipped with two electrical dipoles and a rotating magnetic sensor. These antennas allow to derive, from the measured values of 5 components of the wave field, the direction of arrival of the reflected waves hence the inclination of the buried reflectors. The first validation of this innovative concept was carried out during the RANETA (RAdar of NEtlander in Terre Adélie) campaign organized by the Institute Paul-Emile Victor in January-February 2004. This campaign took place on the Antarctic ice sheet close to the French-Italian Cap Prudhomme station. 8 soundings of the ice shelf were performed on various sites corresponding to different altitudes above the sea level (ranging from ~285m to ~1100m). We shall provide a detailed description of the principle of operation of the radar and of the method of analysis of the observations. The ice-bedrock interface was detected in all of the soundings with clear signals on both electric and magnetic antennas. The measured ice thicknesses show that up to ~ 45 km from the coast the bed-rock stays at an altitude close to the sea level. In several occasions several echoes have been detected and a dedicated data processing algorithm allows to disentangle the various echoes and determine the location of the reflecting facets of the bed-rock. In support to the data analysis, numerical simulations have been conducted using a FDTD method and reproduce the actual observations. These numerical simulations are also used to interpret the frequency profile of the electric antenna and obtain the electromagnetic characteristics of the upper layer of the ice

    Processing and Calibration for the WISDOM Radar Applied to Field Measurements

    No full text
    International audienceThe capabilities of the WISDOM GPR, which is part of the 2020 ExoMars rover payload, are demonstrated on field test data from two different sites. The objectives of this paper are calibration, data processing and polarimetric classification of buried scatterers
    corecore