1,513 research outputs found

    Negative symptoms as key features of depression among cannabis users: a preliminary report.

    Get PDF
    OBJECTIVE: Cannabis use is frequent among depressed patients and may lead to the so-called "amotivational syndrome", which combines symptoms of affective flattening and loss of emotional reactivity (i.e. the so-called "negative" symptomatology). The aim of this study was to investigate the negative symptomatology in depressed patients with concomitant cannabis use disorders (CUDs) in comparison with depressed patients without CUDs. PATIENTS AND METHODS: Fifty-one patients with a diagnosis of Major Depressive Disorder (MDD) and concomitant CUD and fifty-one MDD patients were enrolled in the study. The 21-Item Hamilton Depression Rating Scale (HDRS) and the negative symptoms subscales of the Positive and Negative Syndrome Scale (PANSS) were used to assess depressive and negative symptomatology. RESULTS: Patients with cannabis use disorders presented significantly more severe negative symptoms in comparison with patients without cannabis use (15.18 ± 2.25 vs 13.75 ± 2.44; t100 = 3.25 p = 0.002). DISCUSSION: A deeper knowledge of the "negative" psychopathological profile of MDD patients who use cannabis may lead to novel etiopathogenetic models of MDD and to more appropriate treatment approaches

    Fractal Markets Hypothesis and the Global Financial Crisis: Scaling, Investment Horizons and Liquidity

    Full text link
    We investigate whether fractal markets hypothesis and its focus on liquidity and invest- ment horizons give reasonable predictions about dynamics of the financial markets during the turbulences such as the Global Financial Crisis of late 2000s. Compared to the mainstream efficient markets hypothesis, fractal markets hypothesis considers financial markets as com- plex systems consisting of many heterogenous agents, which are distinguishable mainly with respect to their investment horizon. In the paper, several novel measures of trading activity at different investment horizons are introduced through scaling of variance of the underlying processes. On the three most liquid US indices - DJI, NASDAQ and S&P500 - we show that predictions of fractal markets hypothesis actually fit the observed behavior quite well.Comment: 11 pages, 3 figure

    Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic

    Get PDF
    DARC (Detection of Apoptosing Retinal Cells) is a retinal imaging technology that has been developed within the last 2 decades from basic laboratory science to Phase 2 clinical trials. It uses ANX776 (fluorescently labelled Annexin A5) to identify stressed and apoptotic cells in the living eye. During its development, DARC has undergone biochemistry optimisation, scale-up and GMP manufacture and extensive preclinical evaluation. Initially tested in preclinical glaucoma and optic neuropathy models, it has also been investigated in Alzheimer, Parkinson's and Diabetic models, and used to assess efficacy of therapies. Progression to clinical trials has not been speedy. Intravenous ANX776 has to date been found to be safe and well-tolerated in 129 patients, including 16 from Phase 1 and 113 from Phase 2. Results on glaucoma and AMD patients have been recently published, and suggest DARC with an AI-aided algorithm can be used to predict disease activity. New analyses of DARC in GA prediction are reported here. Although further studies are needed to validate these findings, it appears there is potential of the technology to be used as a biomarker. Much larger clinical studies will be needed before it can be considered as a diagnostic, although the relatively non-invasive nature of the nasal as opposed to intravenous administration would widen its acceptability in the future as a screening tool. This review describes DARC development and its progression into Phase 2 clinical trials from lab-based research. It discusses hypotheses, potential challenges, and regulatory hurdles in translating technology

    TransCom N2O model inter-comparison - Part 2:Atmospheric inversion estimates of N2O emissions

    Get PDF
    This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr(-1) and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0-30A degrees N to 30-90A degrees N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies

    Predicting wet age-related macular degeneration (AMD) using DARC (detecting apoptosing retinal cells) AI (artificial intelligence) technology

    Get PDF
    Objectives: To assess a recently described CNN (convolutional neural network) DARC (Detection of Apoptosing Retinal Cells) algorithm in predicting new Subretinal Fluid (SRF) formation in Age-related-Macular-Degeneration (AMD). Methods: Anonymized DARC, baseline and serial OCT images (n = 427) from 29 AMD eyes of Phase 2 clinical trial (ISRCTN10751859) were assessed with CNN algorithms, enabling the location of each DARC spot on corresponding OCT slices (n = 20,629). Assessment of DARC in a rabbit model of angiogenesis was performed in parallel. Results: A CNN DARC count >5 at baseline was significantly (p = 0.0156) related to development of new SRF throughout 36 months. Prediction rate of eyes using unique DARC spots overlying new SRF had positive predictive values, sensitivities and specificities >70%, with DARC count significantly (p < 0.005) related to the magnitude of SRF accumulation at all time points. DARC identified earliest stages of angiogenesis in-vivo. Conclusions: DARC was able to predict new wet-AMD activity. Using only an OCT-CNN definition of new SRF, we demonstrate that DARC can identify early endothelial neovascular activity, as confirmed by rabbit studies. Although larger validation studies are required, this shows the potential of DARC as a biomarker of wet AMD, and potentially saving vision-loss

    Effect of high-pass filtering on ECG signal on the analysis of patients prone to atrial fibrillation

    Get PDF
    The aim of this study was to assess the effect of filtering techniques on the time-domain analysis of the ECG. Multi-lead ECG recordings obtained from chronic atrial fibrillation (AF) patients after successful external cardioversion have been acquired. Several high-pass filtering techniques and three cut-off frequency values were used: Bessel and Butterworth four-pole and two-pole bidirectional and unidirectional filters, at 0.01, 0.05 and 0.5 Hz low cut-off frequency. As a reference, a beat-by-beat linear piecewise interpolation was used to remove baseline wander, on each P-wave. Results show that ECG filtering affects the estimation of P-wave duration in a manner that depends upon the type of filter used: particularly, the bidirectional filters caused negligible variation of P-wave duration, while unidirectional ones provoked an increase higher than 8%
    corecore