350 research outputs found

    Branching of the Falkner-Skan solutions for λ < 0

    Get PDF
    The Falkner-Skan equation f'" + ff" + λ(1 - f'^2) = 0, f(0) = f'(0) = 0, is discussed for λ < 0. Two types of problems, one with f'(∞) = 1 and another with f'(∞) = -1, are considered. For λ = 0- a close relation between these two types is found. For λ < -1 both types of problem allow multiple solutions which may be distinguished by an integer N denoting the number of zeros of f' - 1. The numerical results indicate that the solution branches with f'(∞) = 1 and those with f'(∞) = -1 tend towards a common limit curve as N increases indefinitely. Finally a periodic solution, existing for λ < -1, is presented.

    Attenuation of doxorubicin-induced cardiotoxicity in a human in vitro cardiac model by the induction of the NRF-2 pathway

    Get PDF
    Dose-dependent cardiotoxicity is the leading adverse reaction seen in cancer patients treated with doxorubicin. Currently, dexrazoxane is the only approved drug that can partially protect against this toxicity in patients, however, its administration is restricted to those patients receiving a high cumulative dose of anthracyclines. Investigations into the mechanisms of cardiotoxicity and efforts to improve cardioprotective strategies have been hindered by the limited availability of a phenotypically relevant in vitro adult human cardiac model system. Here, we adapted a readily reproducible, functional 3D human multi-cell type cardiac system to emulate patient responses seen with doxorubicin and dexrazoxane. We show that administration of two NRF2 gene inducers namely the semi-synthetic triterpenoid Bardoxolone methyl, and the isothiocyanate sulfurophane, result in cardioprotection against doxorubicin toxicity comparable to dexrazoxane as evidenced by an increase in cell viability and a decrease in the production of reactive oxygen species. We further show a synergistic attenuation of cardiotoxicity when the NRF2 inducers and dexrazoxane are used in tandem. Taken together, our data indicate that the 3D spheroid is a suitable model to investigate drug induced cardiotoxicity and we reveal an essential role of the NRF2 pathway in cardioprotection providing a novel pharmacological mechanism and intervention route towards the alleviation of doxorubicin-induced toxicity

    Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor

    Get PDF
    Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.Peer reviewe

    Public health and valorization of genome-based technologies: a new model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The success rate of timely translation of genome-based technologies to commercially feasible products/services with applicability in health care systems is significantly low. We identified both industry and scientists neglect health policy aspects when commercializing their technology, more specifically, Public Health Assessment Tools (PHAT) and early on involvement of decision makers through which market authorization and reimbursements are dependent. While Technology Transfer (TT) aims to facilitate translation of ideas into products, Health Technology Assessment, one component of PHAT, for example, facilitates translation of products/processes into healthcare services and eventually comes up with recommendations for decision makers. We aim to propose a new model of valorization to optimize integration of genome-based technologies into the healthcare system.</p> <p>Methods</p> <p>The method used to develop our model is an adapted version of the Fish Trap Model and the Basic Design Cycle.</p> <p>Results</p> <p>We found although different, similarities exist between TT and PHAT. Realizing the potential of being mutually beneficial justified our proposal of their relative parallel initiation. We observed that the Public Health Genomics Wheel should be included in this relative parallel activity to ensure all societal/policy aspects are dealt with preemptively by both stakeholders. On further analysis, we found out this whole process is dependent on the Value of Information. As a result, we present our LAL (Learning Adapting Leveling) model which proposes, based on market demand; TT and PHAT by consultation/bi-lateral communication should advocate for relevant technologies. This can be achieved by public-private partnerships (PPPs). These widely defined PPPs create the innovation network which is a developing, consultative/collaborative-networking platform between TT and PHAT. This network has iterations and requires learning, assimilating and using knowledge developed and is called absorption capacity. We hypothesize that the higher absorption capacity, higher success possibility. Our model however does not address the phasing out of technology although we believe the same model can be used to simultaneously phase out a technology.</p> <p>Conclusions</p> <p>This model proposes to facilitate optimization/decrease the timeframe of integration in healthcare. It also helps industry and researchers to come to a strategic decision at an early stage, about technology being developed thus, saving on resources, hence minimizing failures.</p

    Involvement of the p62/NRF2 signal transduction pathway on erythrophagocytosis

    Get PDF
    This deposit is composed by the main article plus the supplementary materials of the publication.Erythrophagocytosis, the phagocytic removal of damaged red blood cells (RBC), and subsequent phagolysosome biogenesis are important processes in iron/heme metabolism and homeostasis. Phagolysosome biogenesis implies the interaction of nascent phagosomes with endocytic compartments and also autophagy effectors. Here, we report that besides recruitment of microtubule-associated protein-1-light chain 3 (LC3), additional autophagy machinery such as sequestosome 1 (p62) is also acquired by single-membrane phagosomes at very early stages of the phagocytic process and that its acquisition is very important to the outcome of the process. In bone marrow-derived macrophages (BMDM) silenced for p62, RBC degradation is inhibited. P62, is also required for nuclear translocation and activation of the transcription factor Nuclear factor E2-related Factor 2 (NRF2) during erythrophagocytosis. Deletion of the Nrf2 allele reduces p62 expression and compromises RBC degradation. In conclusion, we reveal that erythrophagocytosis relies on an interplay between p62 and NRF2, potentially acting as protective mechanism to maintain reactive oxygen species at basal levels and preserve macrophage homeostasis.Fundação para a Ciência e a Tecnologia grants: (HMSP-ICT/0024/2010, UID/Multi/04462/2013, SFRH/BD/62197/2009, SFRH/BD/90258/2012, SFRH /BD/51877/2012, SFRH/BD/52293/2013, PTDC/SAU-TOX/116627/2010, HMSP-ICT/0022/2010 ); European Union FEDER support: (COMPETE, QREN, PT2020 Partnership Agreement), ERC grant: (ERC-2011-AdG 294709-DAMAGECONTROL).info:eu-repo/semantics/publishedVersio

    A New Model for Raf Kinase Inhibitory Protein Induced Chemotherapeutic Resistance

    Get PDF
    Therapeutic resistance remains the most challenging aspect of treating cancer. Raf kinase inhibitory protein (RKIP) emerged as a molecule capable of sensitizing cancerous cells to radio- and chemotherapy. Moreover, this small evolutionary conserved molecule, endows significant resistance to cancer therapy when its expression is reduced or lost. RKIP has been shown to inhibit the Raf-MEK-ERK, NFκB, GRK and activate the GSK3β signaling pathways. Inhibition of Raf-MEK-ERK and NFκB remains the most prominent pathways implicated in the sensitization of cells to therapeutic drugs. Our purpose was to identify a possible link between RKIP-KEAP 1-NRF2 and drug resistance. To that end, RKIP-KEAP 1 association was tested in human colorectal cancer tissues using immunohistochemistry. RKIP miRNA silencing and its inducible overexpression were employed in HEK-293 immortalized cells, HT29 and HCT116 colon cancer cell lines to further investigate our aim. We show that RKIP enhanced Kelch-like ECH-associated protein1 (KEAP 1) stability in colorectal cancer tissues and HT29 CRC cell line. RKIP silencing in immortalized HEK-293 cells (termed HEK-499) correlated significantly with KEAP 1 protein degradation and subsequent NRF2 addiction in these cells. Moreover, RKIP depletion in HEK-499, compared to control cells, bestowed resistance to supra physiological levels of H2O2 and Cisplatin possibly by upregulating NF-E2-related nuclear factor 2 (NRF2) responsive genes. Similarly, we observed a direct correlation between the extent of apoptosis, after treatment with Adriamycin, and the expression levels of RKIP/KEAP 1 in HT29 but not in HCT116 CRC cells. Our data illuminate, for the first time, the NRF2-KEAP 1 pathway as a possible target for personalized therapeutic intervention in RKIP depleted cancers
    corecore