832 research outputs found

    The development of a compact free spectral range semiconductor laser biosensor

    Get PDF
    We present a new evanescent field sensor based on InP/InGaAsP ridge waveguide semiconductor lasers. The laser itself forms an integrated sensing chip containing both a light source and a waveguide. Simple modifications are made to readily available devices, meaning that the chips could form very compact and cost effective sensors

    Luciferase-free Luciferin Electrochemiluminescence

    Get PDF
    Luciferin is one of Nature's most widespread luminophores, and enzymes that catalyze luciferin luminescence are the basis of successful commercial “glow” assays for gene expression and metabolic ATP formation. Herein we report an electrochemical method to promote firefly's luciferin luminescence in the absence of its natural biocatalyst—luciferase. We have gained experimental and computational insights on the mechanism of the enzyme-free luciferin electrochemiluminescence, demonstrated its spectral tuning from green to red by means of electrolyte engineering, proven that the colour change does not require, as still debated, a keto/enol isomerization of the light emitter, and gained evidence of the electrostatic-assisted stabilization of the charge-transfer excited state by double layer electric fields. Luciferin's electrochemiluminescence, as well as the in situ generation of fluorescent oxyluciferin, are applied towards an optical measurement of diffusion coefficients

    Use of a dual reporter plasmid to demonstrate bactofection with an attenuated aroa- derivative of Pasteurella multocida b:2

    Get PDF
    A reporter plasmid pSRG has been developed which expresses red fluorescent protein (RFP) from a constitutive prokaryotic promoter within Pasteurella multocida B:2 and green fluorescent protein (GFP) from a constitutive eukaryotic promoter within mammalian cells. This construct has been used to determine the location and viability of the bacteria when moving from the extracellular environment into the intracellular compartment of mammalian cells. Invasion assays with embryonic bovine lung (EBL) cells and an attenuated AroA- derivative of Pasteurella multocida B:2 (strain JRMT12), harbouring the plasmid pSRG, showed that RFP-expressing bacteria could be detected intracellularly at 3 h post-invasion. At this stage, some EBL cells harbouring RFP-expressing bacteria were observed to express GFP simultaneously, indicating release of the plasmid into the intracellular environment. At 5 h post-invasion, more EBL cells were expressing GFP, while still harbouring RFP-expressing bacteria. Concurrently, some EBL cells were shown to express only GFP, indicating loss of viable bacteria within these cells. These experiments proved the functionality of the pSRG dual reporter system and the potential of P. multocida B:2 JRMT12 for bactofection and delivery of a DNA vaccine

    Organ curvature sensing using pneumatically attachable flexible rails in robotic-assisted laparoscopic surgery

    Get PDF
    In robotic-assisted partial nephrectomy, surgeons remove a part of a kidney often due to the presence of a mass. A drop-in ultrasound probe paired to a surgical robot is deployed to execute multiple swipes over the kidney surface to localise the mass and define the margins of resection. This sub-task is challenging and must be performed by a highly-skilled surgeon. Automating this sub-task may reduce cognitive load for the surgeon and improve patient outcomes. The eventual goal of this work is to autonomously move the ultrasound probe on the surface of the kidney taking advantage of the use of the Pneumatically Attachable Flexible (PAF) rail system, a soft robotic device used for organ scanning and repositioning. First, we integrate a shape-sensing optical fibre into the PAF rail system to evaluate the curvature of target organs in robotic-assisted laparoscopic surgery. Then, we investigate the impact of the PAF rail’s material stiffness on the curvature sensing accuracy, considering that soft targets are present in the surgical field. We found overall curvature sensing accuracy to be between 1.44% and 7.27% over the range of curvatures present in adult kidneys. Finally, we use shape sensing to plan the trajectory of the da Vinci surgical robot paired with a drop-in ultrasound probe and autonomously generate an Ultrasound scan of a kidney phantom

    Energy expenditure estimation using accelerometry and heart rate for multiple sclerosis and healthy older adults

    Get PDF
    Accurate estimation of Energy Expenditure (EE) in ambulatory settings provides greater insight into the underlying relation between different human physical activity and health. This paper describes the development and validation of energy expenditure estimation algorithms. A total of 4 healthy subjects and 3 suffering from multiple sclerosis were monitored using a gold-standard energy expenditure measurement system, a heart rate monitor and accelerometry. We demonstrated that greater improvements can be achieved by estimating energy expenditure during normal activities of daily living by combining both whole body acceleration estimates, vertical body acceleration estimates, body posture and heart rate data as part of a flex heart rate algorithm in subject specific models when compared to using accelerometry or heart rate data alone. This will allow more accurate EE estimation during normal activities of daily living
    corecore