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Abstract—Accurate estimation of Energy Expenditure (EE) in 

ambulatory settings provides greater insight into the underlying 

relation between different human physical activity and health. This 

paper describes the development and validation of energy 

expenditure estimation algorithms. A total of 4 healthy subjects and 3 

suffering from multiple sclerosis were monitored using a gold-

standard energy expenditure measurement system, a heart rate 

monitor and accelerometry. We demonstrated that greater 

improvements can be achieved by estimating energy expenditure 

during normal activities of daily living by combining both whole body 

acceleration estimates, vertical body acceleration estimates, body 

posture and heart rate data as part of a flex heart rate algorithm in 

subject specific models when compared to using accelerometry or 

heart rate data alone. This will allow more accurate EE estimation 

during normal activities of daily living. 

Keywords— Energy expenditure, heart rate, accelerometer, 

multiple sclerosis, elderly, ADL. 

I.  INTRODUCTION 

The importance of physical activity and physical fitness is 
well accepted as a means to general physical and mental health. 
Many published studies exist establishing an inverse 
relationship between physical activity and morbidity and 
mortality from chronic diseases such as cardiovascular disease, 
hypertension, maturity onset diabetes, and colon cancer. 
Further studies have shown direct proportionality between 
physical activity and fitness with length of life. 

Accurate estimation of Energy Expenditure (EE) in an 
ambulatory setting provides significant insight into determining 
the underlying relation between different types of human 
behavior related to physical activity and health. 

The use of accelerometer based systems for the estimation 
of EE has received increasing attention in recent years. The 
portability and relatively low cost of these systems coupled 

with recent advances in signal processing has made their 
application to the problem of EE estimation very appealing, 
particularly for use in a free living environment where bulky, 
expensive systems such as indirect calorimeters are not 
practical. Thus in recent years accelerometers have been widely 
used in studies for the estimation of EE during physical activity 
[1]. To date a large number of commercial devices for the 
estimation of EE exist, these include: Actigraph GT3X+, 
PALtechnologies activPAL, McRoberts' Dynaport, the TriTrac 
R3D and Minisun's IDEEA among others. Within these 
commercial devices there are two main methods for energy 
expenditure. (1) an unit-less measure representative of whole 
body motion represented as activity counts is used to predict 
EE using a linear regression model or (2) a fixed EE value is 
associated with a particular type of activity identified. 

A literature review performed by Murphy et al. 2009 [1] 
into commonly-used accelerometer based devices 
demonstrated their popularity but also noted that they do not 
capture the full energy cost of certain activities, such as 
walking while carrying a load, since acceleration patterns do 
not change under these conditions.  

In the estimation of EE, Spurr et al. 1988 [2] observed that 
a nonlinear relationship exists between heart rate (HR) and EE 
during low intensity activities but above a certain HR threshold 
a strong correlation exists between HR and EE during higher 
intensity activities. This point of differentiation is known as the 
“flex-HR” and typically defined as the average of the highest 
resting HR value and the lowest exercising HR. Leonard et al. 
2003 [3] and Leonard et al. 2012 [4] proposed that the flex-HR 
method has become a standard tool for measuring daily EE in 
free-living human populations. In fact, Rennie et al. 2001 [5] 
demonstrated that simply using the heart rate and basic 
anthropometric measures can produce results with a strong 
correlation.  
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However a drawback with relying on heart rate alone is that 
it can be affected by more than just activity (e.g. stimulus such 
as caffeine, stress). Thus the combination of inertial sensors 
and heart rate monitoring has the potential to account for more 
of the variables associated with EE estimation. 

Recently Altini et al. 2012 [6] successfully demonstrated 
the efficacy of using both accelerometry and heart rate data to 
predict EE. Through incorporating the flex-HR method 
described above along with the detection of activity clusters as 
well as anthropometric data to the EE estimation improved by 
more than 19%. 

A commercial system does exist that combines both heart 
rate data as well as accelerometry data to estimate EE. The 
CamNtech's Actiheart does produce an EE estimate, however 
as is the case with commercial EE estimation devices, details 
on the algorithms employed are not provided. 

EE estimation in a young healthy subject population, such 
as in [6], has been studied extensively. However, applying such 
estimation models to older subject groups or those who suffer 
from a particular chronic condition, which may hinder 
movement, needs to be investigated.  

Multiple sclerosis (MS) is an immune-mediated disease 
characterized by inflammatory demyelination (CNS). This 
damage of the CNS structures leads to deficits of body 
functions, which, in turn, affect patient activities, such as 
walking, and normal activities of daily living (ADL). MS has a 
prevalence of 1 per 1,000 adults in the USA [7]. Due to the 
nature of this disease different levels of effort and thus energy 
are required for an affected and non-affected subject [8]. 
However little is known about the estimation of EE in this 
population group. 

The aim of this study is thus to examine if combining both 
accelerometry and heart rate data, can more accurate estimates 
of energy expenditure be achieved when monitoring health 
middle aged and elderly subjects as well as subjects suffering 
from MS, using sensors located at the chest. 

II. MATERIAL AND METHOD 

A. Trial set-up 

Movement kinematics, heart rate and energy expenditure 
data were recorded from 4 healthy middle aged subject and 3 
subjects suffering from MS. The trial was carried out in 
collaboration with the Department of Education and Health 
Sciences and the Department of Electronic Engineering at the 
University of Limerick.  

Ethical approval was granted by the University of 
Limerick research ethical committee. The 4 (3 F, 1 M) healthy 
subjects ranged in age from 53 to 64 years old (60±4.83yrs), 
height from 1.55m to 1.87m (1.68±0.15m), weight from 62kg 
to 91kg (73.25±12.53). The 3 (3 F, 0 M) MS subjects ranged 
in age from 35 to 63 years old (49±14.05yrs), height from 
1.61m to 1.76m (1.69±0.08m), weight from 62kg to 77kg 
(67.33±8.39). 

B. Data acquisition 

Movement kinematics data was captured using the 
Shimmer [9] (www.shimmer-research.com) inertial sensors 
attached to the waist and left-underarm, held in place using 
elastic belts. Heart rate was acquired using a Polar chest strap 
(www.polar.com). Energy expenditure was obtained using the 
Oxycon Mobile Metabolic System

1
 for EE measurement and 

was used as the gold standard to validate the signals. The 
monitoring set-up for this trial is detailed in Fig 1. Subjects 
were also video recorded during the complete trial to validate 
the activities. Tri-axial accelerometer data was obtained from 
Shimmer devices fitted on the left underarm and waist. The 
energy expenditure was sampled twice per minute and stored 
as metabolic equivalent of task METs (-) the heart rate (BPM) 
data were also sampled twice per minute. 

C. Protocol 

All subjects were asked to perform as standardised routine 
of various housework and lifestyle activities which include: (1) 
Resting (lying), (2) dressing, (3) Walking (figure of 8), (4) 
watching TV (sitting), (8) writing (sitting), (9) dusting upright, 
(10) Folding laundry (standing). The activities were performed 
in the order outlined to allow activities of higher intensity to be 
followed by activities of lower intensity with each activity 
lasting 10 minutes with the exception of the stair climbing task, 
which lasted 5 minutes. The complete protocol lasted 95 
minutes. 

 

Fig 1 - Monitoring set-up. Subjects wore the Oxycon mobile system, the 

Shimmer inertial sensors, which include a tri-axial accelerometer at the left 
underarm and waist 

D. Features 

1) Vertical acceleration estimate 
The tri-axial accelerometer data were converted to proper 

acceleration and 3-point median filtered. Estimates of vertical 
acceleration (m/s

2
) and the gravity vector (g) were obtained 

through the method described by Bourke et al. [10] using a first 
order Butterworth filter with a cut-off of 0.85Hz. The mean of 
the vertical acceleration was taken using a non-overlapping 30 
second window to make it directly comparable with energy 
expenditure and heart rate measurements.  

                                                           
1 Carefusion Netherlands, Houten, The Netherlands 

http://www.shimmer-research.com/
http://www.polar.com/


2) Posture detection 
A distinction between upright and lying was performed 

using the longitudinal accelerometer axis signal. Lying was 
determined using a threshold angle of greater than 60

0
 from 

vertical. 

3) Whole body acceleration estimate 
An estimate of the whole body movement was obtained 

using the algorithm developed by Bouten et al. [11] where the 
inertial magnitude area (IMAtot) was calculated using the norm 
of the band-pass filtered tri-axial accelerometer data integrated 
over a time window T.  

4) Heart rate 
The heart rate data sampled twice per minute and 

represented as BPM was used directly. 

5) Flex heart rate algorithm 
The flex HR threshold is calculated by taking the maximum 

HR while static and lying and the minimum HR while upright 
and dynamic. Distinguishing between lying and upright was 
performed using the method described in section D subsection 
2). Distinguishing between static and dynamic activity was 
performed by thresholding the variance of the vertical 
accelerometer axis using a 5 second non-overlapping window 
with a threshold of 0.005. If the HR is above the flex HR both 
the heart rate and the accelerometer features are used to 
estimate the energy expenditure. If the HR is below the flex 
HR value only the accelerometer features are used. 

E. The EE estimation algorithms  

A total of six separate EE estimation algorithms are 
examined. These include; two separate accelerometer based 
algorithms, a separate heart rate algorithm and two algorithms 
that combine the accelerometer features, the heart rate and the 
flex heart rate algorithm. 

Algorithm 1 uses only the IMAtot whole body acceleration 
estimate developed by Bouten described in subsection 3), 
Algorithm 2 uses the vertical acceleration estimate, described 
in 1) and the vertical z-axis to indicate the posture angle. 
Algorithm 3 uses only the heart rate. Algorithm 4 combines 
algorithm 1 and the flex heart rate algorithm, Algorithm 5 
combines algorithm 2 and the flex heart rate algorithm and 
Algorithm 6 combines Algorithms 1, 2 and the flex heart rate 
algorithm. 

F. Data-analysis 

A separate model for energy expenditure estimation was 
developed for each subject for all six algorithms. These were 
implemented using a linear regression model. The model 
requires a matrix, X, where each of the columns contains a 
feature, for every 30 seconds of activity, and a vector, y, 
containing the ‘gold–standard’ energy expenditure recorded 
from the Oxycon Mobile Metabolic System. The set of 
weights, w, are chosen to minimize the sum of squared errors 
between the estimate of EE, ŷ, and the ‘true’ EE, y, as in (1). 

ŷ = Xw      (1) 
The solution to this problem is given in (2).  

w = (X
T
 X)

-1
 X

T
 y  (2) 

This was repeated for each subject with each individual 
activity bout being separated into a 2/3 training set and 1/3 
testing set. 

III. RESULTS 

A total of 11 hours and 5 minutes of EE data were 
recorded, from 4 healthy subjects and 3 suffering from MS. 
Subjects performed a series of low, medium and high intensity 
activities as described in section C. Data were analysed, with 
the 7 subject specific models for 6 different algorithms. Using 
the training data, a subject specific model was created for each 
algorithm as described previously. The test data were used with 
the developed models for the respective algorithms. Correlation 
coefficients and the percent error, calculated as the ratio 
between the root-mean-square-error to the peak-to-peak 
amplitude of the reference signal, were calculated to assess the 
relationship between the EE estimates and the measured EE 
and presented in TABLE I.  

Using the whole body acceleration estimate developed by 
Bouten et al. [11] in Algorithm 1, the average correlation 
coefficients and percentage errors were r=0.854±0.043, 
11.8±1.05% and r=0.5800±0.279, 17.5±3.74% with healthy 
and MS subjects respectively. For Algorithm 2 a combination 
of the Vertical acceleration estimate and the vertical z-axis was 
used, the average correlation coefficients and percentage errors 
were r=0.8093±0.043, 13.1±0.98% and r=0.6102±0.2171, 
17.3±3.06% for the healthy and MS subjects respectively. 

Using the heart rate alone, in Algorithm 3, the average 
correlation coefficients and percentage errors were 
r=0.8211±0.031, 12.7±0.81% and r=0.7459±0.147, 
14.8±3.55% for healthy and MS subjects respectively.  

The flex heart rate was calculated as described earlier. The 
flex HR thresholds ranged between 64.5 bpm and 83.5 bpm for 
the healthy subject with a mean and standard deviation (SD) of 
71.38±11.24 bpm and between 65 and 75 for the MS subjects 
with a mean and SD of 69.5±5.07 bpm. The flex HR values 
were using in Algorithms 4, 5 and 6. 

Combining the Whole body acceleration estimate 
developed by Bouten et al. [11] in Algorithm 1 with the flex 
heart rate, for Algorithm 4, produced average correlation 
coefficients and percentage errors of r=0.9178±0.018, 
8.9±0.83% and r=0.8466±0.018, 12.1±0.13% with healthy and 
MS subjects respectively. Combining the Vertical acceleration 
estimate and the vertical z-axis as in Algorithm 2 along with 
the Flex heart rate produced average correlation coefficients 
and percentage errors of r=0.9183±0.033, 8.7±1.34% and 
r=0.8486±0.026, 12.0±0.53% for the healthy and MS subjects 
respectively. 

By combining algorithm 1, 2 and the Flex heart rate 
Algorithm 6 includes the whole body acceleration estimation, 
the vertical acceleration estimate, posture and heart rate data. 
Algorithm 6 thus produced average correlation coefficients and 
percentage errors of r=0.9226±0.021, 8.6±0.82% and 
r=0.8540±0.025, 11.8±0.41% for the healthy and MS subjects 
respectively. 



TABLE I.  CORRELATION COEFFICIENTS AND RMS PERCENTAGE ERROR FOR BOTH HEALTHY AND MS SUBJECTS FOR COMBINATIONS OF ACCELEROMETER 

AND HEART RATE FEATURES AND THE FLEX HR ALGORITHM.  

 
Algorithm 

number 
1 2 3 4 5 6 

Algorithm 

features 
IMAtot vâ  HR IMAtot & Flex HR 

vâ & Flex HR vâ , IMAtot  & Flex 

HR 

 r % error r % error r % error r % error r % error r % error 

Healthy 

Subjects 
      

  
    

Subject 1 0.901 10.7 0.823 13.9 0.855 12.6 0.943 8.1 0.953 7.5 0.950 7.7 

Subject 2 0.809 12.4 0.748 14.0 0.837 11.6 0.915 8.5 0.921 8.3 0.917 8.4 

Subject 3 0.826 12.9 0.845 12.1 0.807 13.2 0.914 9.2 0.926 8.6 0.925 8.6 

Subject 4 0.879 11.0 0.816 12.5 0.786 13.3 0.899 10.0 0.874 10.6 0.899 9.7 

Mean (SD) 
0.854 

(0.043) 
11.8 

(1.05) 
0.809 

(0.043) 
13.1 

(0.98) 
0.821 

(0.031) 
12.7 

(0.81) 
0.918 

(0.018) 

8.9 

(0.83) 

0.918 

(0.033) 

8.7 

(1.34) 

0.923 

(0.021) 

8.6 

(0.82) 

             

MS Subjects             

Subject 1 0.810 13.6 0.791 14.1 0.576 18.9 0.854 12.0 0.845 12.4 0.859 11.8 

Subject 2 0.661 17.8 0.671 17.5 0.838 12.9 0.860 12.1 0.876 11.4 0.876 11.4 

Subject 3 0.269 21.0 0.369 20.2 0.824 12.5 0.826 12.2 0.825 12.3 0.827 12.2 

Mean (SD) 
0.580 

(0.279) 

17.5 

(3.74) 

0.610 

(0.2171) 

17.3 

(3.06) 

0.746 

(0.147) 

14.8 

(3.55) 
0.8466 

(0.018) 

12.1 

(0.13) 

0.8486 

(0.026) 

12.0 

(0.53) 

0.854 

(0.025) 

11.8 

(0.41) 

 

 

IV. DISCUSSION 

We have assessed the use of both acceleration data 
harvested from accelerometers and heart rate data harvested 
using a chest strap for the estimation of EE during a scripted 
routine both separately and in different combinations. The 
outputs of the algorithms were validated and compared to EE 
recorded using the Oxycon Mobile Metabolic System which 
was used as the gold standard. 

Through incorporating the heart rate data along with the 
accelerometer data into Algorithm 6 an improvement from 
r=0.85 to r=0.92 and from 11.8% to 8.6% error was observed 
for the health subject’s test data and from r=0.0.6102 to 
r=0.854 and from 17.3% to 11.8% error for the MS subject’s 
test data when compared to simply using the accelerometer 
alone. Comparing Algorithm 6 to using only the heart rate data 
demonstrated an improvement of r=0.8211 to 0.9226 and a 
percentage error reduction from 12.7 to 8.6 for health subjects 
and from r=0.7459 to 0.8540 and a percentage error reduction 
from 14.8 to 11.8 for MS subjects. Thus from these results it is 
clear to see that the combination of whole body acceleration 
estimation, vertical acceleration estimate, posture and heart rate 
as part of the flex heart rate algorithm (Algorithm 6) produces 
the lowest percentage error and highest correlation when 
compared to the gold-standard system and to all other 
algorithm combinations. 

Algorithm 4 and 5 both incorporate the flex heart rate 
algorithm along with different accelerometer features. 
Marginal improvements can be seen between algorithms 4 and 
5, and algorithm 6, with a percentage error improvement of 
<0.3%, and a correlation coefficient improvement of r<0.01 
being observed between Algorithm 4 or 5 and Algorithm 6. 

A sample of the output profile from Algorithm 6 compared 
to the Oxycon system is presented in Figure 2. The results thus 
demonstrate that by applying Algorithm 6, great accuracies can 
be achieved when estimating EE using both HR, as part of a 
flex heart rate algorithm and acceleration measurements in a 
subject specific model, even if the subjects have different 
physiological conditions. This does require that the model is 
trained for that subject using the Oxycon Mobile Metabolic 
System. Further research is required to estimate the long term 
accuracy of a model developed in this way. 

 

Figure 2 – A segment of algorithm 6 compared to the Oxycon output 

r=0.95 and error = 7.7%. 

The accelerometry data was transformed into an estimate of 
vertical acceleration and used as one of only 3 inputs into 
Algorithms 2, 5 and 6. The motivation of using this signal is 
that many of the largest muscles in the human body are located 



in the lower extremity, which include; the gluteus maximus, 
the quadriceps and the soleus. These muscles are used 
frequently for up and down movements such as sitting/lying to 
standing transitions, climbing stairs and walking. We 
hypothesise that including estimates of vertical acceleration 
into an EE model will produce greater EE estimates. This has 
been confirmed in this current data-set for both healthy and MS 
subjects even if only minor improvements were observed. 

The sample of subjects in the current study was limited, 
recruiting only 4 healthy subjects and 3 subjects suffering from 
MS. However a total of over 11 hours of data were recorded 
during this experiment and the final outcome was used to prove 
that a subject specific model using Algorithm 6 produces high 
coefficients of correlation when analysing the results from the 
test data sets. 

A time delay does exist between the start of the onset of an 
activity and the change in HR. This was manually removed for 
each subject by aligning the change in HR and activity that 
exists when the stair climbing activity was performed. Further 
research will need to be performed to correctly characterise 
this time delay in order to develop a more robust real-time 
system. 

V. CONCLUSION 

In conclusion we have demonstrated that by combing 
whole body acceleration estimation, vertical acceleration 
estimation, posture and heart rate as part of the flex heart rate 
algorithm, greater estimates of EE can be obtained when a 
subject specific model is created for both healthy subjects and 
those suffering from MS. This will allow more accurate EE 
estimation monitoring during normal activities of daily living. 
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