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laparoscopic surgery

A. McDonald-Bowyer1*, S. Dietsch1*, E. Dimitrakakis1,
J. M. Coote1, L. Lindenroth2, D. Stoyanov1 and A. Stilli1*
1Welcome/EPSRC Centre for Interventional and Surgical Sciences, University College London,
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In robotic-assisted partial nephrectomy, surgeons remove a part of a kidney

often due to the presence of a mass. A drop-in ultrasound probe paired to a

surgical robot is deployed to execute multiple swipes over the kidney surface

to localise the mass and define the margins of resection. This sub-task is

challenging and must be performed by a highly-skilled surgeon. Automating

this sub-task may reduce cognitive load for the surgeon and improve patient

outcomes. The eventual goal of this work is to autonomously move the

ultrasound probe on the surface of the kidney taking advantage of the use of

the Pneumatically Attachable Flexible (PAF) rail system, a soft robotic device

used for organ scanning and repositioning. First, we integrate a shape-sensing

optical fibre into the PAF rail system to evaluate the curvature of target organs

in robotic-assisted laparoscopic surgery. Then, we investigate the impact of

the PAF rail’s material stiffness on the curvature sensing accuracy, considering

that soft targets are present in the surgical field. We found overall curvature

sensing accuracy to be between 1.44% and 7.27% over the range of curvatures

present in adult kidneys. Finally, we use shape sensing to plan the trajectory

of the da Vinci surgical robot paired with a drop-in ultrasound probe and

autonomously generate an Ultrasound scan of a kidney phantom.

KEYWORDS

medical robotics, soft robot applications, soft robotmaterials and design, soft sensors
and actuators, shape sensing, da Vinci research kit (dVRK), surgical robotics

1 Introduction

Partial nephrectomy is a laparoscopic surgical procedure in which a portion of the
kidney is removed.This operation maximises the patient’s postoperative kidney function
compared to total nephrectomy (Kaul et al., 2007) as it preserves renal function. Robotic-
Assisted Partial Nephrectomy (RAPN) employs robotics during this complex procedure
and improves patient outcomes, as detailed in Kaul et al. (2007) and Bhayani (2008).
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Namely, it shortens hospital stays, reduces post-operative
pain, and minimizes recovery time. Robotic assistance for
high precision surgical tasks can also reduce surgeon fatigue
(Van Der Schatte Olivier et al., 2009; Stefanidis et al., 2010), thus
improving accuracy. The RAPN surgical procedure is described
in detail in Bhayani (2008). Tumour margin identification
can be done in preoperative imaging modalities, Computer
Tomography (Su et al., 2009) and Magnetic Resonance Imaging
(Shingleton and Sewell, 2001), and this information can be
visualised intraoperatively through 3D model visualisation
and image-guided navigation Ferguson et al. (2018). Practically
however, most RAPN surgeons utilize intraoperative ultrasound
(US) to evaluate tumour margins during the procedure
(Hekman et al., 2018). In Kaczmarek et al. (2013a), the authors
suggest that robotic and laparoscopic approaches have
comparable perioperative outcomes when they help surgeons
to guide drop-in US probes during the kidney scan, with the
former having the advantage of increased surgeon dexterity and
potential autonomy.

Despite the additional degrees of freedom (DoF) provided
by robotic laparoscopic tools over hand-held laparoscopic
tools, RAPN is still a challenging procedure that requires
a highly skilled surgeon with years of speciality training
(Larcher et al., 2019). US scanning of the kidney is also a
demanding sub-task due to slippage of theUS probe on the organ
surface, and needing to maintain contact between the tissue and
the probe while also doing image interpretation with respect
to tool actions (Yakoubi et al., 2012; Kaczmarek et al., 2013b;
Autorino et al., 2014).

A potential aid for this sub-task is the deployment of soft
robotic systems in the surgical workspace. Recently, the use
of soft robots for minimally invasive surgery has gathered
attention due to their inherent flexibility and compliance with
their environment (Runciman et al., 2019). In previous work
(Stilli et al., 2019), we presented a Pneumatically Attachable
Flexible rail (PAF rail) to enable stable, track-guidedUS scanning
of the kidney during RAPN. The PAF rail is attached to the
kidney surface using a continuous suction cup. Stable track-
guided US scanning is achieved by connecting the drop-in US
probe to the perimeter of the rail. In Ettorre et al. (2019) the
authors have investigated the autonomous deployment of the
PAF rail on the surface of the organ and its use in intraoperative
organ manipulation. In Wang et al. (2020), Wang et al. studied
the 3D reconstruction of a mass embedded in a kidney phantom
when the PAF rail guides theUS probe. Accurate shape sensing of
the PAF rail within the surgical field could further improve the
deployment of this system on the targeted organ surface while
autonomously controlling the probes’ trajectory.

The complete deployment process of the PAF rail and
its use with US probes is detailed in Stilli et al. (2019).
However, deploying such a device during surgery presents
many control challenges. Embedding sensors in the soft

robot can give the information needed to meet said control
challenges, but these sensors must have the ability to
bend, twist, and contort in tandem with the soft robot. In
surgical soft robotics, the most common sensing methods are
external vision-based systems using intra-operative imaging,
Wang et al. (2020); Luo et al. (2015) and electromagnetic
tracking, Luo et al. (2015), Lun et al. (2019), particularly
in needle-based (Hakime et al., 2012) and catheter-based
interventions (Lugez et al., 2017; Schwein et al., 2018). But both
these techniques present some drawbacks. Vision-based shape
tracking is met with visual occlusion due to the constrained
surgical workspace, while electromagnetic tracking is prone to
extensive errors due to local field distortions. Consequently,
researchers have investigated the fibre-optics sensors in this
context (Silvestri and Sche, 2011; Sareh et al., 2015). These
fibre-optic sensors are flexible, biocompatible, immune to
electromagnetic interference and have small radial dimensions,
making them ideal for surgical applications (Mishra et al., 2011).
In particular, Fibre Bragg Grating (FBG)-based sensors allow
direct multi-point strain measurements along the axial direction
of the fibre and can contribute to real-time shape reconstruction
(Polygerinos et al., 2010).

In this paper, we assess the performance of the real-time
curvature and shape sensing of the PAF rail system using
embedded FBG-based shape sensors. We further demonstrate
how the PAF rail local shape can help plan a trajectory
and autonomously guide an intraoperative US probe, thus
having the potential to reduce surgeons’ cognitive load while
improving tumour margins identification.This can also improve
the 3D reconstruction accuracy of malignant masses while
working towards being able to overlay intraoperatively the 3D
reconstructed images in the field of view of the surgeon.

The paper is structured as follows; in Section 2 the FBG-
based curvature and shape sensing theory, and mechanical
design and fabrication of the sensorised PAF rail is introduced.
In Section 3, we show experimental studies evaluating the
curvature sensing with the PAF rail applied to phantoms of
different curvatures and materials. Different rail materials of
various stiffness are also evaluated. We also demonstrate the
ability to use the FBG-sensed shape to perform an autonomous
US scan of a kidney phantom using the da Vinci Surgical System.
Discussion of our findings is given in Section 4, and finally,
Section 5 contains conclusion and future work.

2 Materials and methods

2.1 FBG-based shape sensing

FBG sensors are optical sensors that utilise Bragg reflection to
measure strain and temperature. FBG sensor fabrication requires
altering an optical fibrewith a laser and an interferometer to draw
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FIGURE 1
Schematic diagram of the PAF rail with integrated shape sensing fibre. The image on the left illustrates how the system could be attached to the
kidney during RAPN. The images on the right illustrate the system design and the integration of the fibre sensing capability within the rail.

FIGURE 2
PAF rail with integrated Fine Bore LDPE tubing to house the FBGS DTG fibre.

a periodic change in the refractive index (Bronnikov et al., 2019),
known as a grating. Each grating is wavelength-specific and, only
a subset of the light spectra, the Bragg wavelength, is reflected,
while the rest is transmitted. We can express this relationship as:

λB = 2neffΛ (1)

where λB is the central wavelength of the reflected spectrum,
neff is the effective refractive index of the fibre core and Λ is the
grating pitch (Zhuang et al., 2018).

The shape-sensor we use is a custom-made multi-core
fibre (MCF) (CP-FBG DTG R© (Draw Tower Grating), FBGS
International, Jena, Germany), with a central core surrounded
by seven equally spaced outer cores. Each core contains 25
FBGs spaced at 10 mm intervals along the optical axis, giving an
overall sensing length of 240 mm. Bending of the shape-sensing
fibre causes strains in the FBGs, in turn causing shifts in the
Bragg wavelengths of the gratings, which are monitored by an

optical interrogator. The raw wavelength data are converted to
strains for each grating, and the strains of the four gratings at
each position along the fibre are then used to compute to a
local curvature at that position. The inital data acquisition and
processing is performed by proprietary software (IllumiSense
v3.1. x, FBGS International, Jena, Germany) and a proprietary
LabVIEWVI (National Instruments, Austin, TX, United States),
and the curvature data is recorded and visualised through a
custom Python application.

2.2 Design and fabrication of the
sensorized PAF rail

The design of the PAF rail suction line used in this
work is based on the optimisation study firstly presented
in Stilli et al. (2019). The structure of the PAF rail-tool
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FIGURE 3
Schematic presenting an overview of the hardware and software elements of the proposed shape sensing system integration in the PAF rail system.

TABLE 1 Phantom specifications.

Phantom type Material Radius (mm)

Rigid VeroClear Resin 30, 50, 70, 90, 110

Soft DragonSkin™3 30, 110

Soft EcoFlex™00-20 30, 110

interface is an improved version of the design proposed in
Wang et al. (2020), where the customised grasping slot is
replaced by a continuous segmented fin, enabling grasping of
the PAF rail at any point along it. We added a channel of 1 mm
diameter along the internal perimeter of the rail to embed the
shape sensing fibre, as shown in Figure 1.

The mould for this prototype was designed in SolidWorks
(Dassault Systèmes, Vélizy-Villacoublay, France) and 3D printed
with an Objet260 Connex (Stratasys, Eden Prairie, MN, United
States) in VeroClear resin material. Liquid silicone was degassed
in a vacuum chamber for 10 minutes before being injected into
the mould and left to cure at room temperature for the required
period.

We aimed to identify the silicone material that provided the
most accurate shape sensing of the surface on which PAF rail
system is deployed while ensuring enough structural rigidity
to mechanically pair with the modified US probe presented in
Wang et al. (2020). To ensure robust pairing between the probe
and the rail profile, a certain level of stiffness is required. We

also hypothesized that PAF rails made of silicone significantly
stiffer than the tissue targeted would locally deform it, while
systems significantly softer would conform better but provide
less accurate shape sensing. The goal of this part of the
study was to identify the best trade-off between shape sensing
accuracy, mechanical pairing and navigation of the US probe.
To validate our hypotheses, we selected five silicones from the
supplier Smooth-On Inc. (Macungie, PA, US), and we fabricated
five PAF rails with different shore hardness: DragonSkin™ 10
NV (Shore hardness 10 A), DragonSkin™ 20 (Shore hardness
20 A), DragonSkin™ 30 (Shore hardness 30 A), Smooth-Sil™ 940
(Shore hardness 40 A) and Smooth-Sil 950™ (Shore hardness
50 A).

The shape-sensing optical fibre is inserted in the rail through
fine bore low-density polyethylene (LDPE) tubing (Ø0.86 mm
ID, Ø1.52 mm OD). The tubing is fixed at the distal end of the
PAF rail by pushing it through the silicone. Then, we secure it
with Sil-Poxy™ silicone adhesive (Smooth-On Inc., Macungie,
PA, US) at the proximal and distal ends, as depicted in Figure 2.

Since the sensing length of the shape-sensing fibre is longer
than the rail, only eight groups of four gratings lie within the rail
profile, thus only these gratings are used to compute the PAF rail
shape. The first grating group lies 3 mm from the rail’s proximal
end to guarantee that the curvature sensed by those gratings
represents its current shape accurately. The fibre is secured to
the tubing with Sil-Poxy™ silicone adhesive at the proximal
end.
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FIGURE 4
Soft curvature phantoms (material, curvature radius): (A) EcoFlex™ 00–20, 110 mm (B) EcoFlex™ 00–20, 30 mm (C) DragonSkin™, 110 mm (D)
DragonSkin™30, 30 mm. Rigid curvature phantoms: (E) 110 mm, 90 mm, 70 mm, 50 mm, 30 mm (ascending curvature).

FIGURE 5
Case study experimental setup. (A) FBGS Interrogator and Fan-Out
Box: the fan-out is used to connect the multicore shape-sensing
fibre to the optical interrogator. (B) FBGS DTG fibre. (C) PVA kidney
phantom. (D) DS30 PAF Rail. (E) BK X12C4 Drop-In Ultrasound
Probe. (F) EndoWrist Prograsp Forceps, (G) da Vinci surgical robot.

2.3 Phantom design and fabrication

To test the curvature sensing performance of the sensorized
PAF rail, we fabricated several curvature phantoms of different
curvature radii R and materials.

For the ground truth experiment, seven concentric circular
grooves were laser cut into a sheet of acrylic plastic. The
grooves each had a constant radius R, ranging from 30 mm
to 110 mm in 20 mm increments. These measurements were
chosen to correspond to the range of curvatures of an adult
human kidney, as obtained from analysis of the KiTs19 dataset
(Heller et al., 2019; Heller et al., 2021). This dataset contained
abdominal CT images of 210 adult patients who underwent
partial or radical nephrectomy. This will be referred to as
the calibration plate for the remainder of this paper. The
experimental setup is shown in Figure 3.

For experiments involving the PAF rail, we 3D printed a rigid
curvature block comprised of seven different constant curvature
surfaces. The curvatures range from 30 mm to 110 mm with
20 mm increments and, each step has an elevation of 15 mm to
accommodate for the width of the rail (Figure 4E).

In addition, we fabricated four soft curvature phantoms
with R of 30 mm and 110 mm, each in DragonSkin™ 30
(Shore hardness 30 A) and Ecoflex™ 00–20 (Shore hardness
00–20), Smooth-On Inc. (Macungie, PA, US) (Figures 4A–D).
These materials are suggested in Adams et al. (2017) and
Cheung et al. (2014) for the most realistic development of soft
kidney phantoms. The phantom specifications are summarised
in Table 1.

For the case study, we designed and fabricated an
anatomically accurate kidney phantom with realistic mechanical
properties, such as shape, volume and stiffness. Based on the
literature (Adams et al., 2017; Filippou and Tsoumpas 2018;

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2022.1099275
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


McDonald-Bowyer et al. 10.3389/frobt.2022.1099275

FIGURE 6
Ground Truth Sensed Curvature at each grating. Mean sensed
curvature (solid line) against groove curvature (dashed line) at each
grating index along the fibre. The shaded region represents the
standard deviation over five iterations of recordings.

Maneas et al., 2018; Fohely et al., 2022), we assessed that 3-
D printing a negative mould and moulding tissue mimicking
material within it would be the preferred method for fabricating
a phantom with our desired mechanical and imaging properties.
Using 3D Slicer (Pieper et al., 2004), we reconstructed a 3D
volume of an adult kidney using the CT images and semantic
segmentation labels available from the KiTs19 dataset and
made a negative mould in Clear Resin. Tissue-mimicking
material (polyvinyl alcohol—PVA) was poured and cast within
it. A spherical structure was fabricated and embedded within
the phantom to replicate a malignant mass. We followed the
same method used to make the kidney phantom but added a
freeze-thaw cycle during the process (Mackle et al., 2019). The
additional freeze-thaw cycle increased the stiffness of the mass
and the vasculature, thereby providingmore realistic mechanical
properties.

2.4 Ground truth curvature sensing

To assess the accuracy of the shape sensing fibre in
combination with the optical system and IllumiSense software
used for subsequent experiments, we evaluated the performance
of the curvature sensing on a range of curvatures characteristic

of a human kidney, as obtained from analysis of the KiTs19
dataset. We set the reference wavelengths by holding the fibre
straight and flat against a parallel surface. Then, we positioned
the sensing portion in each of the grooves of the calibration
plate. The grooves held the fibre in place such that there was
no need for external fixation. Wavelength shift and curvature
were recorded at each grating index and for each curvature
for 30 iterations. Then, the recorded curvatures were averaged
over 30 data collected at a 100 Hz rate for noise filtering. We
repeated eight times the batch curvature measurements resetting
the reference wavelength for each repetition of data collection.
Since we experienced random noise during four recordings, we
decided to label the defective recordings as outliers and removed
them from the presented data.

2.5 Curvature sensing

The fibre was embedded in each of the PAF rail samples
as described in Section II.B. We used a 3 CFM single-stage
vacuum pump (Bacoeng, Hawthorne, CA) to vacuumize a 12-
L vacuum chamber (Bacoeng, Hawthorne, CA) and monitored
the pressure thanks to an embedded manometer. The vacuum
pressure used for all the tests was Pabs = 7.325kPa, as discussed
in Stilli et al. (2019).The chamber was connected with a pressure
line to the tested PAF rail sample. Each of the five PAF
rails was tested individually and, each test was repeated five
times.

The PAF rail sample was suctioned to each of the curved
surfaces of the rigid curvature block and soft curvature
phantoms. The soft curvature phantoms were clamped in a vice
to ensure that the stiffness of each material remained constant
for different radii. Curvature data from the eight DTGs present
within the rail was recorded for 30 iterations. The experiments
were repeated five times.

2.6 Stiffness tests

We conducted stiffness tests on porcine kidney tissue
samples, silicone samples from the supplier Smooth-On Inc. and
a PVA sample to select the material closest to the stiffness of

TABLE 2 Bare fibre sensed curvature errors (gratings 1–25).

R (mm) Max ϵ (×10−2mm−1) (%) Mean ϵ (×10−2mm−1) (%)

30 0.42 ± 0.48 12.5 0.1 ± 0.11 2.9

50 0.17 ± 0.08 8.6 0.06 ± 0.04 3.2

70 0.1 ± 0.04 7.3 0.04 ± 0.03 2.9

90 0.13 ± 0.16 11.9 0.03 ± 0.03 2.9

110 0.07 ± 0.11 7.6 0.03 ± 0.02 2.8
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TABLE 3 Bare fibre sensed curvature errors (gratings 11–19).

R (mm) Max ϵ (×10−2mm−1) (%) Mean ϵ (×10−2mm−1) (%)

30 0.39 ± 0.78 1.00 0.73 ± 0.37 2.43

50 0.11 ± 0.70 0.22 1.36 ± 1.02 2.72

70 1.21 ± 2.47 1.73 1.21 ± 0.82 1.74

90 3.73 ± 8.89 4.14 2.27 ± 1.67 2.52

110 7.13 ± 13.9 6.48 1.59 ± 4.18 1.44

FIGURE 7
Curvature sensing accuracy of each grating along the fibre. Accuracy is defined as the ratio of sensed curvature to geometric curvature, for perfect
sensing we would expect a value of 1 a each grating.

an adult human kidney and to quantify the relative stiffness
differences between the rail and the target organ. Using a surgical
scalpel and a template, we excised cylindrical kidney tissue
samples from the thickest part of each kidney. We fabricated
silicone samples of the same geometry using a mould 3D
printed in Clear Resin. The PVA sample was cut out of a PVA
block to mitigate shrinkage when moulding. The geometrical
properties of each kidney and silicone sample are summarised
in Table 4. We conducted the stiffness tests using a UR3e robot
arm (Universal Robots, Odense, Denmark), towhichwe attached
a Mini 40 Force Sensor (ATI Industrial Automation, NC, United
States) with a custom mount. The mount also included a custom
indenter. Then, we planned trajectories and recorded position
and force data with ROS.

2.7 Case study

In a robotic-assisted partial nephrectomy, the surgeon must
identify the tumour margins before the excision. To do so, the

surgeon scans the kidney with a drop-in intraoperative US probe
paired with either the EndoWrist R© Prograsp™ or the Large
Needle Driver (LDN) of the da Vinci Surgical System (Intuitive
Surgical Inc., Sunnyvale, CA, US). It is a challenging task that can
only be achieved by a highly-skilled surgeon.

As a proof-of-concept of the fibre integration in the PAF
rail for path planning, we automated this US scan. The robotic
system employed to conduct this demonstration is the first
generation da Vinci robot alongside the da Vinci Research Kit
(dVRK) platform (Kazanzides et al., 2014;D’Ettorre et al., 2021).
We equipped the first da Vinci Patient Side Manipulator (PSM1)
with the EndoWrist R© Prograsp™ Forceps paired with the drop-
in US probe BK X12C4 (BK-Medical Holding Inc., Peabody,
Massachusetts), as shown in Figure 5.

Among the PAF rail systems manufactured in different
materials, we selected the one made of DragonSkin™30 for this
specific testing because it provides the best trade-off in terms of
adhesion performance on hard surfaces and ability to withstand
high vacuum pressure without collapsing. Further findings are
discussed in section III.B. The case study we are presenting in
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FIGURE 8
Rail-sensed curvature at each radius (decreasing L-R) on the rigid phantom. The materials on the x-axis are in order of increasing material stiffness.
Green corresponds to the rail with best sensing accuracy, red to the worst.

this section can be summarised with the following steps (See also
Figure 5):

1. The fibre is embedded in the DragonSkin™30 rail.
2. Suction is achieved by applying vacuum pressure on the line

(as described in III.C) to attach the PAF rail to the kidney
phantom.

3. The drop-in US probe is manually paired with the
EndoWrist R© Prograsp™ forceps gripper of the da Vinci
Surgical System itself mounted on one of the dVRK
arms.

4. The PSM1 is manually positioned so that the connector at
the tip of the drop-in US probe is paired with the rail profile
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FIGURE 9
Rail-sensed curvature at 110 mm (top) and 30 mm (bottom) on the soft phantoms: DragonSkin™(L) and EcoFLex™(R). The materials on the x-axis
are in order of increasing material stiffness. Green corresponds to the rail with best sensing accuracy, red to the worst.

perpendicularly to the fibre in correspondence of the first
grating.

5. We take an instantaneous reading of the 2-D shape of the
optical fibre generated by the FBGS proprietary software. This
shape is computed out of the spectra of the fibre recorded
through the hardware connection with the FBGS Fan Out Box
and Interrogator.

6. The 2-D shape is converted into a 3-D point trajectory,
assuming no displacement along the z-direction since we
paired the probe perpendicular to the PAF rails. And publish
to the dVRK computer through ROS.

7. Then, the 3-D trajectory is converted to a PosedStamped
message in ROS. Here, we control the frame called
“PSM1_psm_base_link”, which corresponds to the tooltip
coordinates. First, we extract the current frame. For each
position along the trajectory, we compute the novel frame by
adding the 3-D coordinates to the current frame.

8. Finally, the poses are published to the dVRK. The US
probe moves along the PAF-rail following said trajectory and
generate US images of the phantom.

3 Results and discussion

3.1 Ground truth curvature sensing

Figure 6 shows the sensed curvature against geometric
curvature for each of the curvature grooves in the calibration
plate at each grating. Sensing accuracy increases as the curvature
is reduced while variation along the fibre (for each grating) also
decreases, giving an overall better curvature measurement at
larger radii.

The absolute and % errors to geometric curvature are
summarised in Table 2 for the entire length of the fibre (gratings
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FIGURE 10
Absolute curvature sensing error for each rail material over the
radii tested on the rigid phantom. Ground truth curvature sensing
error is added as a baseline.

TABLE 4 Experimental material stiffness properties.

Material Shore Hardness Elastic Modulus (MPa)

Kidney Sample 1 NA (4.35± 0.578) × 10−3

Kidney Sample 2 NA (3.68± 0.456) × 10−3

Kidney Sample 3 NA (5.79± 0.672) × 10−3

Eco-FlexTM00-20 00–20 0.246± 0.00230

Eco-FlexTM00-30 00–30 2.879± 0.230

DragonSkinTMFX-Pro 2 A 3.632± 0.181

DragonSkinTM10 NV 10 A 7.660± 0.211

DragonSkinTM20 20 A 8.481± 0.194

DragonSkinTM30 30 A 9.990± 0.600

1 to 25 inclusive) and in Table 3 for a subset of the gratings
(gratings 11 to 19 inclusive).

We further evaluated the curvature sensing accuracy of each
grating by calculating the ratio of sensed curvature to geometric
curvature, averaged over the curvature range. We expect a value
of one for perfect sensing accuracy (shown in Figure 7).

Overall, the average sensing error (average of all relative
errors at all grating indices at all radii) is 1.02± 0.03× 10–2 mm
(2.9%). This is comparable to curvature accuracy reported in
Zhuang et al. (2018).

3.2 Curvature sensing

Figure 8 shows the average sensed curvature of each rail
material for each radius compared with the ground-truth
sensed curvature and geometric curvature when tested with the
rigid phantom. The rail sensed curvature accuracy deteriorates

as radius is decreased, agreeing with the bare fibre sensing
behaviour. At R = 110 mm the best rail is DS30 while the worst
is SS950. At R = 90 mm the best rail is SS940 while the worst is
SS950. At R = 70 mm the best rail is SS950 while the worst is
DS20. At R = 50 mm and R = 30 mm overall sensing accuracy
is significantly worse, however SS950 and SS940 are the best
performers respectively, while DS20 is the worst at both radii.
Furthermore, each datapoint has a large uncertainty arising from
the large variances in the raw data.

In this experiments, we studied the influence of the rail
material over curvature sensing performance. The idea behind
these experiments was to select a suitable material for the task
that provided the best curvature sensing performance.

Thus, to improve the readability of the results presented in
Figures 8, 9, we coloured in green the rail expressing the lowest
absolute error between measured and ground truth curvature.
On the contrary, we highlighted the worst-performing rail in red.

Figure 10 shows that there is a trend linking the curvature
sensing accuracy to tested curvature. At smaller curvatures,
the rails prove to be more accurate than at larger curvatures.
It contradicts the results obtained during the ground truth
curvature sensing presented in Figure 6. One hypothesis to
explain this trend is the effect of the stiffness of the optical fibre
exceeding that of the rail. This mismatch in stiffness properties
may cause the fibre to bend tangentially to the rail at smaller
radii (50 mmand 30 mm), as opposed to concentric to it. Further
experiments could ascertain the stiffness of the fibre to compare
with the rail, however this is out of the scope of this study.

In Figure 8, DS20 and SS950 present the worst sensing
accuracy for two or more curvatures and SS940 had the best
curvature sensing performance on the rigid phantom. DS30 had
the second best performance.

Subsequently, we evaluated the curvature sensing
performance on soft phantoms that have similar material
properties to that of kidney tissue. Results for the soft curvature
phantoms for each rail material are shown in Figure 9. For
this experiment, only the extremities of the range of radii were
tested. Again, all figures show the error to ground-truth sensed
curvature and geometric curvature. Figure 9 shows the results
for phantoms made in DragonSkin™ 30 silicone (Left), and
Figure 9R shows that for EcoFlex™ 00–20 silicone.

In agreement with both the bare fibre data and the rigid
sensing data, we see that sensing accuracy is better R = 110 mm
than at R = 30 mm. At R = 110 mm DS30 is the worst rail
material for both DragonSkin™ and EcoFlex™ phantoms. In
the former phantom material, SS940 is the best rail material
while in the latter phantom material, SS950 is the best rail
material. At R = 30 mm all rail materials exhibit similar poor
performance (>25% error to geometric curvature). There is no
data for the SS950 rail on the EcoFlex™ phantom as the rail
could not stick to this radius for the required period. The
softer rails tend to collapse under vacuum pressure. As a result,
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FIGURE 11
Case study snapshot. (A) Stream snapshot recorded with the drop-in US probe. (B) Camera top view. (C) Camera lateral view. (D) Computed
drop-in US trajectory.

they tend to express which can explain lower curvature sensing
accuracy. Moreover, stiffer rails were harder to stick to the
phantom surface. Especially with SS950, we could not maintain
the contact at R = 30 with the phantoms for the experiment
duration.

Current experiments suggests that SS940 proved better
curvature sensing over all the tested curvatures and phantoms
as depicted in Figure 10. However, it was hard to stick it
to the surface of the rigid curvature block and this material
was not selected for the experiments presented in the next
section. Thus, since the soft phantoms did not highlighted
any significant trend and that DS30 was the second best
material on the rigid curvature, we selected it for the next
experiment.

3.3 Material stiffness experiments

The experimental stress-strain curves were obtained for each
of the tested materials. The Young’s Modulus of the materials
considered was obtained by applying a polynomial best-fit line to
the data between 7.5% and 15% of maximum compression. We
summarised these values in Table 4 alongside the documented
Shore Hardness of the silicone materials.

3.4 Case study

We slid the US probe along the rail for 20 mm before it
detached from it. However, the contact ensured a stable imaging
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of the phantom, including the embedded mass simulating a
tumour embedded into it, as shown in Figure 11A). Then, the
probe disconnected from the phantom and the US was lost.
Multiple reasons can explain this trajectory error.

Since the current fibre integration design prevents the probe
from sliding along the rail on one side, we attached the probe
on the opposite side from the sensing fibre. In this experiment,
we assumed that the shape of the kidney was uniform along
the width of the rail. However, in reality, this is not the case.
Additionally, we planned the trajectory of the US probe in a
plane (as shown in Figure 11D). In the 3D space, this can
be sufficient control only if we ensure that the longitudinal
plane of the rail is parallel to the trajectory plane. However,
we manually positioned the probe perpendicular to the rail (as
shown in Figures 11B, C), which might induce the trajectory
error. With further development, we could better align these
planes. For instance, we could use ArUco markers (Romero-
Ramirez et al., 2018) to compute the transformation matrix
between them and update the probe’s trajectory from the results.

Finally, the rail attachment only helps to slide the probe along
the rail (See Figures 11B, C). The actual US element is located at
3 cm from this contact point. In our case, it helps us to obtain
an US stream even if the probe attachment detaches from the
rail. But, in further studies, we would need to integrate that
information into the path planning of the probe.

4 Conclusion

This paper presents an integrated system for curvature
sensing of the PAF rails achieved by integrating amulti-core FBG
optical fibre into the body of the device. The system uses local
strainmeasurements to sense curvature along the axis of the rails,
therefore providing information on the local curvature of the
rail without the need for additional sensors. The accuracy of the
curvature sensing has been evaluated by comparing the sensed
curvature to a range of known curvatures in the range of a human
kidney. The system has shown promising results; the bare FBGS
fibre can sense these curvatureswithmean error ranging between
1.44% and 2.72% over the range of radii (when considering the
central subsection of the sensing portion of the fibre).

The accuracy of the curvature sensing when the fibre is
embedded in the PAF rail of different materials has also been
evaluated. The DS30 rail was identified as the optimal rail
material based on sensing accuracy, reliability and material
properties. When this material is used, the FBG sensing system
can sense curvatures between 30 mm and 110 mm with a mean
error ranging between 1.35% at 110 mm and 18.9% at 30 mm.
Significant improvements can be made by further evaluating
the systematic errors affecting the system when the rail is
vacuumised and increasing the iterations of experiments from 5
to 10 in order to reduce the variance.

Furthermore, we have demonstrated the ability to use the
sensed curvature to control the trajectory of the da Vinci
surgical robot in real-time. Using the da Vinci Research Kit,
we autonomously planned and executed the trajectory of the
US probe paired with the PAF rail during a kidney phantom
scan (single swipe). We inferred the trajectory from the sensed
curvatures of the FBGS system. Qualitatively the resultant
images compared well with those achieved by manual execution.
We propose this system for autonomous or semi-autonomous
guidance of theUSprobe by the daVinci surgical robot to achieve
a more stable scan and improved ultrasound image than manual
swiping.

Future work will focus on quantitatively evaluating the
effectiveness of the FBGS-sensed curvature to plan the path
of the drop-in ultrasound probe on the surface of the kidney,
understanding the systematic and random errors present
in the curvature sensing performance of the sensorised
PAF rails, and their impact in the trajectory executed by
the da Vinci surgical robot. We will also look to involve
clinicians in quantitative evaluation of the autonomously
acquired US images compared with manual acquired
ones.
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