1,623 research outputs found

    Lorentz-covariant deformed algebra with minimal length

    Get PDF
    The DD-dimensional two-parameter deformed algebra with minimal length introduced by Kempf is generalized to a Lorentz-covariant algebra describing a (D+1D+1)-dimensional quantized space-time. For D=3, it includes Snyder algebra as a special case. The deformed Poincar\'e transformations leaving the algebra invariant are identified. Uncertainty relations are studied. In the case of D=1 and one nonvanishing parameter, the bound-state energy spectrum and wavefunctions of the Dirac oscillator are exactly obtained.Comment: 8 pages, no figure, presented at XV International Colloquium on Integrable Systems and Quantum Symmetries (ISQS-15), Prague, June 15-17, 200

    The effect of memory on relaxation in a scalar field theory

    Full text link
    We derive a kinetic equation with a non-Markovian collision term which includes a memory effect, from Kadanoff-Baym equations in ϕ4\phi^4 theory within the three-loop level for the two-particle irreducible (2PI) effective action. The memory effect is incorporated into the kinetic equation by a generalized Kadanoff-Baym ansatz.Based on the kinetic equations with and without the memory effect, we investigate an influence of this effect on decay of a single particle excitation with zero momentum in 3+1 dimensions and the spatially homogeneous case. Numerical results show that, while the time evolution of the zero mode is completely unaffected by the memory effect due to a separation of scales in the weak coupling regime, this effect leads first to faster relaxation than the case without it and then to slower relaxation as the coupling constant increases.Comment: 12 pages, 6 eps figure

    Orthogonality Effects in Relativistic Models of Nucleon Knockout Reactions

    Get PDF
    We study the effect of wave function orthogonality in the relativistic treatment of the nucleon removal reactions (gamma, p) and (e, e' p). The continuum wave function describing the outgoing nucleon is made orthogonal to the relevant bound states using the Gram-Schmidt procedure. This procedure has the advantage of preserving the asymptotic character of the continuum wave function and hence the elastic observables are unaffected. The orthogonality effects are found to be negligible for (e, e' p) reactions for missing momenta up to 700 MeV/c. This holds true for both parallel and perpendicular kinematics. By contrast the orthogonalization of the wave functions appears to have a more pronounced effect in the case of (gamma, p) reactions. We find that the orthogonality effect can be significant in this case particularly for large angles. Polarization of the outgoing protons and photon asymmetry show more sensitivity than the cross sections. If the orthogonality condition is imposed solely on this one hole state the effects are usually smaller.Comment: LaTeX, 7 postscript figure

    Relativistic Calculations for Photonuclear Reactions (III): A Consistent Relativistic Analysis of the (e,e'p) and (gamma,p) Reactions

    Full text link
    Relativistic calculations for the quasifree electron scattering process (e, e'p) and the direct knockout contribution to (gamma, p) reactions are presented. The spectroscopic factors determined from the former reaction are used to fix the magnitude of the knockout contribution to the (gamma, p) reaction at 60 MeV. The results obtained for several nuclei indicate that the knockout contributions are much larger in magnitude and hence closer to the data than predicted in an earlier comparison based on non-relativistic calculations. We discuss the sensitivity of the results to the choice of parameters for the binding and final state interactions. We find these uncertainties to be more pronounced at the larger missing momenta explored by the (gamma, p) reaction. The implications of the present results for the size of contributions due to meson exchange currents are discussed.Comment: LaTeX, 21 pages including 5 figures, submitted to Nuc. Phys.

    Nuclear Medium Effects in the Relativistic Treatment of Quasifree Electron Scattering

    Get PDF
    Non-relativistic reduction of the S-matrix for the quasifree electron scattering process A( e,ep )A1A\left(~e, e'p~\right)A-1 is studied in order to understand the source of differences between non-relativistic and relativistic models. We perform an effective Pauli reduction on the relativistic expression for the S-matrix in the one-photon exchange approximation. The reduction is applied to the nucleon current only; the electrons are treated fully relativistically. An expansion of the amplitude results in a power series in the nuclear potentials. The series is found to converge rapidly only if the nuclear potentials are included in the nuclear current operator. The results can be cast in a form which reproduces the non-relativistic amplitudes in the limit that the potentials are removed from the nuclear current operator. Large differences can be found between calculations which do and do not include the nuclear potentials in the different orders of the nuclear current operator. In the high missing momentum region we find that the non-relativistic calculations with potentials included in the nuclear current up to second order give results which are close to those of the fully relativistic calculation. This behavior is an indication of the importance of the medium modifications of the nuclear currents in this model, which are naturally built into the relativistic treatment of the reaction.Comment: Latex, 26 pages including 5 uuencoded postscript figures. accepted for publication in Phys. Rev. C

    Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory

    Full text link
    The quantum time evolution of \phi^4-field theory for a spatially homogeneous system in 2+1 space-time dimensions is investigated numerically for out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym equations including the tadpole and sunset self-energies. Whereas the tadpole self-energy yields a dynamical mass, the sunset self-energy is responsible for dissipation and an equilibration of the system. In particular we address the dynamics of the spectral (`off-shell') distributions of the excited quantum modes and the different phases in the approach to equilibrium described by Kubo-Martin-Schwinger relations for thermal equilibrium states. The investigation explicitly demonstrates that the only translation invariant solutions representing the stationary fixed points of the coupled equation of motions are those of full thermal equilibrium. They agree with those extracted from the time integration of the Kadanoff-Baym equations in the long time limit. Furthermore, a detailed comparison of the full quantum dynamics to more approximate and simple schemes like that of a standard kinetic (on-shell) Boltzmann equation is performed. Our analysis shows that the consistent inclusion of the dynamical spectral function has a significant impact on relaxation phenomena. The different time scales, that are involved in the dynamical quantum evolution towards a complete thermalized state, are discussed in detail. We find that far off-shell 1 3 processes are responsible for chemical equilibration, which is missed in the Boltzmann limit. Finally, we address briefly the case of (bare) massless fields. For sufficiently large couplings λ\lambda we observe the onset of Bose condensation, where our scheme within symmetric \phi^4-theory breaks down.Comment: 77 pages, 26 figure

    Relativistic versus Nonrelativistic Optical Potentials in A(e,e'p)B Reactions

    Full text link
    We investigate the role of relativistic and nonrelativistic optical potentials used in the analysis of (e,epe,e'p) data. We find that the relativistic calculations produce smaller (e,epe,e'p) cross sections even in the case in which both relativistic and nonrelativistic optical potentials fit equally well the elastic proton--nucleus scattering data. Compared to the nonrelativistic impulse approximation, this effect is due to a depletion in the nuclear interior of the relativistic nucleon current, which should be taken into account in the nonrelativistic treatment by a proper redefinition of the effective current operator.Comment: Added one new figure, the formalism section has been enlarged and the list of references updated. Added one appendix. This version will appear in Phys. Rev. C. Revtex 3.0, 6 figures (not included). Full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints

    Breakup Reactions of 11Li within a Three-Body Model

    Get PDF
    We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li) on a light target. The interaction parameters are constrained by known properties of the two-body subsystems, the 11Li binding energy and fragmentation data. The remaining degrees of freedom are discussed. The projectile-target interactions are described by phenomenological optical potentials. The model predicts dependence on beam energy and target, differences between longitudinal and transverse momentum distributions and provides absolute values for all computed differential cross sections. We give an almost complete series of observables and compare with corresponding measurements. Remarkably good agreement is obtained. The relative neutron-9Li p-wave content is about 40%. A p-resonance, consistent with measurements at about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the momentum distributions are insensitive to target and beam energy with a tendency to increase towards lower energies. The transverse momentum distributions are broader than the longitudinal due to the diffraction process. The absolute values of the cross sections follow the neutron-target cross sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st

    Interactions between cell surface protein disulphide isomerase and S-nitrosoglutathione during nitric oxide delivery

    Get PDF
    In this study, we investigated the role of protein disulphide isomerase (PDI) in rapid metabolism of S-nitrosoglutathione (GSNO) and S-nitrosoalbumin (albSNO) and in NO delivery from these compounds into cells. Incubation of GSNO or albSNO (1 μM) with the megakaryocyte cell line MEG-01 resulted in a cell-mediated removal of each compound which was inhibited by blocking cell surface thiols with 5,5′-dithiobis 2-nitrobenzoic acid (DTNB) (100 μM) or inhibiting PDI with bacitracin (5 mM). GSNO, but not albSNO, rapidly inhibited platelet aggregation and stimulated cyclic GMP (cGMP) accumulation (used as a measure of intracellular NO entry). cGMP accumulation in response to GSNO (1 μM) was inhibited by MEG-01 treatment with bacitracin or DTNB, suggesting a role for PDI and surface thiols in NO delivery. PDI activity was present in MEG-01 conditioned medium, and was inhibited by high concentrations of GSNO (500 μM). A number of cell surface thiol-containing proteins were labelled using the impermeable thiol specific probe 3-(N-maleimido-propionyl) biocytin (MPB). Pretreatment of cells with GSNO resulted in a loss of thiol reactivity on some but not all proteins, suggesting selective cell surface thiol modification. Immunoprecipitation experiments showed that GSNO caused a concentration-dependent loss of thiol reactivity of PDI. Our data indicate that PDI is involved in both rapid metabolism of GSNO and intracellular NO delivery and that during this process PDI is itself altered by thiol modification. In contrast, the relevance of PDI-mediated albSNO metabolism to NO signalling is uncertain

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure
    corecore