199 research outputs found

    Jim Allen : radical drama beyond 'days of hope'

    Get PDF
    Due to a desire to establish television as a serious medium, television drama has often been seen as a forum for writers, with names such as David Mercer, Dennis Potter and Trevor Griffiths identified by critics as the driving force, or auteur, behind the works that bear their names rather than, as in much writing about film, the director. However, while this has been so, there are also many examples of writers whose contribution to television writing has been much less celebrated, often due to their close collaboration with a high-profile director who in many critics’ view remains the most influential contributor to the final piece of work. One practitioner who arguably has failed to get the critical credit he is due is Jim Allen, a writer still perhaps best known for his work with one such high-profile director, Ken Loach

    Glucocorticoid Manipulations in Free-Living Animals: Considerations of Dose Delivery, Life-History Context, and Reproductive State

    Get PDF
    1. Experimental glucocorticoid (GC) manipulations can be useful for identifying the mechanisms that drive life history and fitness variation in free-living animals, but predicting the effects of GC treatment can be complicated. Much of the uncertainty about the effects of GC manipulations stems from their multi-faceted role in organismal metabolism, and their variable influence with respect to life-history stage, ecological context, age, sex, and individual variation. 2. Glucocorticoid hormones have been implicated in the regulation of parental care in many vertebrate taxa but in two seemingly contradictory ways, which sets up a potential corticosterone-induced “reproductive conflict”. GCs mediate adaptive physiological and behavioural responses to stressful events, and elevated levels can lead to trade-offs between reproductive effort and survival (e.g. the current reproduction versus survival hypothesis). The majority of studies examining the fitness effects of GC manipulations extend from this hypothesis. However, when animals are not stressed (likely most of the time) baseline GCs act as key metabolic regulators of daily energy balance, homeostasis, osmoregulation, and food acquisition, with pleiotropic effects on locomotor activity or foraging behaviour. Slight increases in circulating baseline levels can then have positive effects on reproductive effort (e.g. the corticosterone fitness/adaptation hypotheses), but comparatively few GC manipulation studies have targeted these small, non-stress induced increases. 3. We review studies of GC manipulations and examine the specific hypotheses used to predict the effects of manipulations in breeding wildlife. We argue that given the dichotomous function of GCs the current ‘reproduction versus survival’ paradigm is unnecessarily restrictive and predicts only deleterious GC effects on fitness. Therefore, a broader set of hypotheses should be considered when testing the fitness effects of GC manipulations. 4. When framing experimental manipulation studies, we urge researchers to consider three key points: life-history context (e.g. long- vs. short-lived, semelparous vs. iteroparous, etc), ecological context, and dose delivery. &nbsp

    Glucocorticoid manipulations in free-living animals: Considerations of dose delivery, life-history context and reproductive state

    Get PDF
    Experimental glucocorticoid (GC) manipulations can be useful for identifying the mechanisms that drive life-history and fitness variation in free-living animals, but predicting the effects of GC treatment can be complicated. Much of the uncertainty stems from the multi-faceted role of GCs in organismal metabolism, and their variable influence with respect to life-history stage, ecological context, age, sex and individual variation. Glucocorticoid hormones have been implicated in the regulation of parental care in many vertebrate taxa but in two seemingly contradictory ways, which sets up a potential GC-induced \u27reproductive conflict\u27. Circulating GCs mediate adaptive physiological and behavioural responses to stressful events, and elevated levels can lead to trade offs between reproductive effort and survival (e.g. the current reproduction vs. survival hypothesis). The majority of studies examining the fitness effects of GC manipulations extend from this hypothesis. However, when animals are not stressed (likely most of the time) baseline GCs act as key metabolic regulators of daily energy balance, homoeostasis, osmoregulation and food acquisition, with pleiotropic effects on locomotor activity or foraging behaviour. Slight increases in circulating baseline levels can then have positive effects on reproductive effort (e.g. the \u27cort\u27 fitness/adaptation hypotheses), but comparatively few GC manipulation studies have targeted these small, non-stress induced increases. We review studies of GC manipulations and examine the specific hypotheses used to predict the effects of manipulations in wild, breeding vertebrates. We argue that given the dichotomous function of GCs the current \u27reproduction vs. survival\u27 paradigm is unnecessarily restrictive and predicts only deleterious GC effects on fitness. Therefore, a broader set of hypotheses should be considered when testing the fitness effects of GC manipulations. When framing experimental manipulation studies, we urge researchers to consider three key points: life-history context (e.g. long vs. short lived, semelparous vs. iteroparous, etc.), ecological context and dose delivery

    The ecology of exercise: mechanisms underlying Individual variation in behavior, activity, and performance: an introduction to symposium

    Get PDF
    Wild animals often engage in intense physical activity while performing tasks vital for their survival and reproduction associated with foraging, avoiding predators, fighting, providing parental care, and migrating. In this theme issue we consider how viewing these tasks as “exercise”—analogous to that performed by human athletes—may help provide insight into the mechanisms underlying individual variation in these types of behaviors and the importance of physical activity in an ecological context. In this article and throughout this issue, we focus on four key questions relevant to the study of behavioral ecology that may be addressed by studying wild animal behavior from the perspective of exercise physiology: (1) How hard do individual animals work in response to ecological (or evolutionary) demands?; (2) Do lab-based studies of activity provide good models for understanding activity in free-living animals and individual variation in traits?; (3) Can animals work too hard during “routine” activities?; and (4) Can paradigms of “exercise” and “training” be applied to free-living animals? Attempts to address these issues are currently being facilitated by rapid technological developments associated with physiological measurements and the remote tracking of wild animals, to provide mechanistic insights into the behavior of free-ranging animals at spatial and temporal scales that were previously impossible. We further suggest that viewing the behaviors of non-human animals in terms of the physical exercise performed will allow us to fully take advantage of these technological advances, draw from knowledge and conceptual frameworks already in use by human exercise physiologists, and identify key traits that constrain performance and generate variation in performance among individuals. It is our hope that, by highlighting mechanisms of behavior and performance, the articles in this issue will spur on further synergies between physiologists and ecologists, to take advantage of emerging cross-disciplinary perspectives and technologies

    HYPERFINE-STRUCTURE IN THE 6SNH (1 = 5) RYDBERG SERIES OF BARIUM

    Get PDF
    The hyperfine structure in the odd-parity 6snh (9 ≀ n ≀ 40) Rydberg series of barium has been investigated, using a single cw ring dye laser and a beam of neutral atoms in the metastable 5

    Wide-field dynamic astronomy in the near-infrared with Palomar Gattini-IR and DREAMS

    Get PDF
    There have been a dramatic increase in the number of optical and radio transient surveys due to astronomical transients such as gravitational waves and gamma ray bursts, however, there have been a limited number of wide-field infrared surveys due to narrow field-of-view and high cost of infrared cameras, we present two new wide-field near-infrared fully automated surveyors; Palomar Gattini-IR and the Dynamic REd All-sky Monitoring Survey (DREAMS). Palomar Gattini-IR, a 25 square degree J-band imager that begun science operations at Palomar Observatory, USA in October 2018; we report on survey strategy as well as telescope and observatory operations and will also providing initial science results. DREAMS is a 3.75 square degree wide-field imager that is planned for Siding Spring Observatory, Australia; we report on the current optical and mechanical design and plans to achieve on-sky results in 2020. DREAMS is on-track to be one of the first astronomical telescopes to use an Indium Galium Arsenide (InGaAs) detector and we report initial on-sky testing results for the selected detector package. DREAMS is also well placed to take advantage and provide near-infrared follow-up of the LSST

    Investigating the New Landscapes of Welfare: Housing Policy, Politics and the Emerging Research Agenda

    Get PDF
    As debates about housing form an increasingly important arena of political controversy, much has been written about the new fissures that have appeared as governments not only struggle to reduce public expenditure deficits but also attempt to address problems such as affordability and homelessness. It is widely anticipated that new conflicts will be played out in the private rental market as access to homeownership becomes unrealistic and the supply of social housing diminishes. However, what other tensions might surface; that hitherto have not been subject to the critical gaze of housing research? In this paper, we provide some thoughts on the nascent policy issues as well as the ideological schisms that are likely to develop in coming years, offering suggestions as to how the focus of housing policy research might be reoriented towards a “politics” framework to capture and better understand the conflicts that are likely to arise

    Pair-Instability Supernovae at the Epoch of Reionization

    Full text link
    Pristine stars with masses between ~140 and 260 M_sun are theoretically predicted to die as pair-instability supernovae. These very massive progenitors could come from Pop III stars in the early universe. We model the light curves and spectra of pair-instability supernovae over a range of masses and envelope structures. At redshifts of reionization z >= 6, we calculate the rates and detectability of pair-instability and core collapse supernovae, and show that with the James Webb Space Telescope, it is possible to determine the contribution of Pop III and Pop II stars toward reionization by constraining the stellar initial mass function at that epoch using these supernovae. We also find the rates of Type Ia supernovae, and show that they are not rare during reionization, and can be used to probe the mass function at 4-8 M_sun. If the budget of ionizing photons was dominated by contributions from top-heavy Pop III stars, we predict that the bright end of the galaxy luminosity function will be contaminated by pair-instability supernovae.Comment: 12 pages, 11 figures. Matches MNRAS accepted versio

    A Dinucleotide Deletion in CD24 Confers Protection against Autoimmune Diseases

    Get PDF
    It is generally believed that susceptibility to both organ-specific and systemic autoimmune diseases is under polygenic control. Although multiple genes have been implicated in each type of autoimmune disease, few are known to have a significant impact on both. Here, we investigated the significance of polymorphisms in the human gene CD24 and the susceptibility to multiple sclerosis (MS) and systemic lupus erythematosus (SLE). We used cases/control studies to determine the association between CD24 polymorphism and the risk of MS and SLE. In addition, we also considered transmission disequilibrium tests using family data from two cohorts consisting of a total of 150 pedigrees of MS families and 187 pedigrees of SLE families. Our analyses revealed that a dinucleotide deletion at position 1527∌1528 (P1527(del)) from the CD24 mRNA translation start site is associated with a significantly reduced risk (odds ratio = 0.54 with 95% confidence interval = 0.34–0.82) and delayed progression (p = 0.0188) of MS. Among the SLE cohort, we found a similar reduction of risk with the same polymorphism (odds ratio = 0.38, confidence interval = 0.22–0.62). More importantly, using 150 pedigrees of MS families from two independent cohorts and the TRANSMIT software, we found that the P1527(del) allele was preferentially transmitted to unaffected individuals (p = 0.002). Likewise, an analysis of 187 SLE families revealed the dinucleotide-deleted allele was preferentially transmitted to unaffected individuals (p = 0.002). The mRNA levels for the dinucleotide-deletion allele were 2.5-fold less than that of the wild-type allele. The dinucleotide deletion significantly reduced the stability of CD24 mRNA. Our results demonstrate that a destabilizing dinucleotide deletion in the 3â€Č UTR of CD24 mRNA conveys significant protection against both MS and SLE
    • 

    corecore