Glucocorticoid Manipulations in Free-Living Animals: Considerations of Dose Delivery, Life-History Context, and Reproductive State.

Final version published as:

Crossin,G.T., Love, O.P., Cooke, S.J. and Williams, T.D. 2016. Glucocorticoid manipulations in free-living animals: considerations of dose delivery, life-history context, and reproductive state. *Functional Ecology* 30: 116–125. DOI: 10.1111/1365-2435.12482

G.T. Crossin^{1*}, O.P. Love², S.J. Cooke³, & T.D. Williams⁴

¹ Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada

² Biology Department, University of Windsor, Windsor, Ontario, Canada

³ Fish Ecology & Conservation Physiology Laboratory, Institute of Environmental Science and Department of Biology, Carleton University, Ottawa, Ontario, Canada

⁴ Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

* Corresponding author: gtc@dal.ca

Summary

- 1. Experimental glucocorticoid (GC) manipulations can be useful for identifying the mechanisms that drive life history and fitness variation in free-living animals, but predicting the effects of GC treatment can be complicated. Much of the uncertainty about the effects of GC manipulations stems from their multi-faceted role in organismal metabolism, and their variable influence with respect to life-history stage, ecological context, age, sex, and individual variation.
- 2. Glucocorticoid hormones have been implicated in the regulation of parental care in many vertebrate taxa but in two seemingly contradictory ways, which sets up a potential corticosterone-induced "reproductive conflict". GCs mediate adaptive physiological and behavioural responses to stressful events, and elevated levels can lead to trade-offs between reproductive effort and survival (*e.g.* the current reproduction versus survival hypothesis). The majority of studies examining the fitness effects of GC manipulations extend from this hypothesis. However, when animals are not stressed (likely most of the time) baseline GCs act as key metabolic regulators of daily energy balance, homeostasis, osmoregulation, and food acquisition, with pleiotropic effects on locomotor activity or foraging behaviour. Slight increases in circulating baseline levels can then have positive effects on reproductive effort (*e.g.* the corticosterone fitness/adaptation hypotheses), but comparatively few GC manipulation studies have targeted these small, non-stress induced increases.
- 3. We review studies of GC manipulations and examine the specific hypotheses used to predict the effects of manipulations in breeding wildlife. We argue that given the dichotomous function of GCs the current 'reproduction versus survival' paradigm is unnecessarily restrictive and predicts only deleterious GC effects on fitness. Therefore, a broader set of hypotheses should be considered when testing the fitness effects of GC manipulations.
- 4. When framing experimental manipulation studies, we urge researchers to consider three key points: life-history context (*e.g.* long- vs. short-lived, semelparous vs. iteroparous, etc), ecological context, and dose delivery.

Keywords: Glucocorticoids, fitness, corticosterone, cortisol, baseline levels, implants

Introduction

Few ideas in life-history theory possess the intuitive appeal and empirical underpinning as that of the trade-off between current reproduction and survival (Nur 1984; Nur 1988; Stearns 1992; Love & Williams 2008). Despite a long-standing recognition that physiological processes must be at the very root of such trade-offs (Fisher 1930), we still know comparatively little about the underlying regulatory mechanisms (but see Williams 2012; Love et al. 2014). Ricklefs & Wikelski (2002) formalized the concept of the "life-history/physiology nexus", which provides a framework for thinking about how physiological processes, particularly those with an endocrine basis, are linked to population-level ecological and evolutionary processes. However, it has only been relatively recently that studies have sought to test hypotheses about the role of hormones as key regulators of life-history variation. Experimental manipulation of hormones (and not just physiology) is particularly useful for illuminating the constraints that drive life-history trade-offs, and hence, life-history variation (Ketterson et al. 1996; Ketterson & Nolan 1999; Zera & Harshman 2001; Harshman & Zera 2007; Sinervo & Basolo 1996; Sinervo 1999; Williams 2012). In this respect, particular attention has been paid to the glucocorticoid hormones (e.g. corticosterone, cortisol, hereafter "GC"), especially as these relate to the 'current reproduction versus survival' paradigm. GCs are excellent candidate hormones for regulation of life-histories because of their central role in homeostasis and daily energy balance and in the stress response, as well as their pleiotropic effects on life-history and behaviour (Wingfield et al. 1998; Love et al. 2005; Breuner et al. 2008; Love & Williams 2008; Bonier et al. 2009; Love et al. 2013; Sheriff & Love 2013).

Hypotheses and predictions concerning the role of GCs in mediating the trade-off between current reproduction and survival arose originally from the role of these hormones in the stress response, rather than from the predictable daily or life-history related changes in baseline levels (*e.g.* Landys *et al.* 2006). However, two recent reviews show how variation in baseline levels, and indeed changes from baseline to maximal levels (*e.g.* stress responsiveness), can be positively, negatively, or non-significantly related to reproduction, survival, or other fitness surrogates (Breuner *et al.* 2008; Bonier *et al.* 2009). Exogenous implant studies often aim specifically to increase baseline GCs to stress-induced levels, and under such an experimental design the current reproduction versus survival paradigm is relevant. But due to the highly variable nature of the effects of exogenous implant delivery and release on circulating levels, the

efficacy of GC-implants in generating the desired blood level increase can be difficult to predict, as can be the duration of such increases. This uncertainty is compounded by GC's dichotomous physiological role, where either increases in baseline or stress-induced expressions can induce very different physiological, behavioural, or fitness-related responses. Layered on top of this is the variable response of GC manipulation due to life-history and ecological context, reproductive stage, and individual variation (Madliger & Love 2014). Will exogenous implants set GC levels at a new baseline high, or are GCs pushed beyond a threshold level indicative of an acute stress response? Moreover, what influence do life-history and reproductive state play in shaping GC trajectories? (Fig. 1). Additionally, exogenous manipulations can be confounded by feedback mechanisms and/or clearance mechanisms, which can unintentionally reduce GC levels despite the aim of increasing them (Remage-Healey & Romero 2001). To address these uncertainties, we suggest that GC implants or injection volumes should be calibrated so that a desired blood level response can be achieved in the target species (e.g. Pravosudov 2003, Criscuolo et al. 2005), while simultaneously taking into account the specific life-history context and reproductive stage that the species is in. Without pilot studies and consideration of the specific life-history and reproductive context, it is not easy to know the shape of the GC response curve, or how this might influence interpretations of measured experimental endpoints. Does manipulation increase baseline levels only slightly, or do levels peak at stress induced or pharmacological levels? And what affect does this have on behaviour, breeding decisions/investment, or fitness?

These questions are important given the increasing number of experimental studies using GC manipulations in free-living animals. It is becoming apparent that the relationship between GCs and fitness varies across life history and breeding stage (*e.g.* Brown *et al.* 2005) and generally complex (Breuner *et al.* 2008; Boonstra 2013a). Our aims in this paper are therefore two-fold. First is to discuss the role of life-history and reproductive stage in shaping the response of animals to exogenous GC manipulations (*e.g.* silastic implants, slow-release pellets, injections, osmotic mini-pumps, etc.), especially as they relate to fitness-relevant traits in free-living animals. Second is to bring attention to the growing number of studies wherein the predictions of the 'current reproductive versus survival' paradigm fail to match the observed results. We believe that for the growing number of manipulation studies being published on freely ranging animals, this paradigm may at times be too restrictive, leaving little room for alternate hypotheses, predictions, or interpretations of the observed effects and variations in life-history or fitness-

related outcomes. Potential reasons for the discord between predictions and results may stem from uncertainty regarding the precise life-history and reproductive context (*e.g.* short vs. longlived species, pre-breeding vs. post-breeding, etc.) and the role of GCs therein, as well as uncertainty about the precise levels (in both magnitude and duration) of GCs being delivered through exogenous manipulation.

GC dose with respect to physiological function and potential for a "reproductive conflict"

GC levels have been descriptively and experimentally linked to variation in both current reproduction and survival, and in the trade-off between these key components of fitness. Extending mostly, although not exclusively, from research on birds, many studies have shown that a parent's loss of offspring, or its tendency to abandon offspring, is often linked to energetic deficiencies, poor food resource availability, or foraging inefficiencies, and thus to variation in both baseline as well as stress-induced plasma GC levels (Wingfield et al. 1998; Dallman et al. 1999; Love et al. 2004; Groscolas et al. 2008; Kitaysky et al. 2010). If baseline levels in a parent exceed some individual or species-specific threshold and cross into an acute or chronic stress response, the prevailing metabolic condition may result in a behavioural shift that favours selfmaintenance at the expense of offspring. This is the central idea underlying the concept of the "emergency life-history stage" found at the root of many 'current reproduction versus survival' studies (Wingfield et al. 1998). But not all studies of GCs fit this paradigm, and indeed recent work has shown an opposite pattern where increased baseline levels (*i.e.* not stress-induced levels) relate positively with investment in offspring. For example, when parent birds are not acutely stressed, then individual variation in baseline GCs can show positive correlations with measures of investment in offspring (e.g. parental care) (Bonier et al. 2011; Crossin et al. 2012; Love et al. 2014). One recent example involved the breeding tactics of wild European starlings (Sturnus vulgaris; Love et al. 2014). Here, breeding investment was manipulated via hatchling removals during current reproduction (first broods), resulting in an increase in baseline corticosterone (CORT) during incubation of the second clutch and facilitating greater investment in future reproduction (second broods). Variation in baseline CORT thus proactively mediated the trade-off between current and future reproductive investment, optimizing investment and maximizing the fitness of individuals.

The contrasting, dichotomous function of GCs to breeding biology is central to the idea of a corticosterone-induced "reproductive conflict" (Love *et al.* 2004), the root of which stems from hormonal pleiotropy (Williams 2012). GCs are constitutively expressed to regulate daily energy balance and homeostasis in vertebrates, and thus act as general metabolic regulators (Crespi *et al.* 2013). GCs can thus show positive associations with current reproductive investment (Bonier *et al.* 2009; Bonier *et al.* 2011; Ouyang *et al.* 2011; Ouyang *et al.* 2013). However, GC secretion is also a component of the stress response, which helps coordinate an adaptive physiological and behavioural response to foster survival, often at the expense of current reproduction. It is thus thought that within the context of reproduction, individuals should minimize or down-regulate GC secretion, or minimize GC reactivity, when reproductive investment is high. A perhaps more suitable hypothesis to frame variations in baseline GC is the corticosterone-adaptation hypothesis, in which positive associations with reproductive (*e.g.* fitness) measures are predicted at certain life-history stages and relative degrees of current reproductive investment (Fig 1).

Because of GC's dual role in the regulation of parental care and the potential for conflict, it is important that experimental studies identify, *a priori*, the appropriate theoretical framework through which increased baseline or stress-induced GC levels can then be correctly interpreted. When this is unknown, *i.e.* when it is not known how exogenous implants will influence circulating GC levels, due to a lack of controlled pilot studies or previous work on the species in question, then studies should acknowledge this uncertainty and offer alternate hypotheses when predicting the effect of GC manipulations on reproductive or other fitness-related proxies.

Response to GCs varies among life-history contexts and stages of reproduction

A clear example of how baseline GC expression can change as a function of reproductive stage is found in Love *et al.* (2004). In that study, mean baseline corticosterone levels in breeding starlings were observed at low levels at the laying stage of the reproductive season. CORT then rose to a new mean baseline during incubation, and again during nestling-provisioning. From this pattern of up-regulation it was inferred that baseline CORT, as a metabolic regulator and correlate of foraging behaviour, is steadily increased during the breeding season to match parental provisioning effort to the demands of growing offspring (Crossin *et al.* 2012; Sheriff & Love 2013). Variation in breeding CORT levels can however vary among species with different

life-histories. In tufted puffins (*Fratercula cirrhata*), a long-lived seabird, the opposite pattern was observed to that of the short-lived passerine above. Mean CORT in puffins peaked just prior to laying, and then declined to lower levels at incubation and chick-rearing (Williams *et al.* 2008) (Fig. 1A). High baseline CORT during pre-breeding can be very important for some species, like seabirds with single egg clutches, who have limited opportunity to exploit spatially ephemeral zooplankton prey and accrue adequate resources for egg production (*e.g.* the match-mismatch hypothesis; Hipfner 2008). Increased pre-breeding CORT may also benefit investment in reproduction in species like common eiders (*Somateria mollissima*) (Hennin *et al.* 2014), which must forage heavily prior to laying in order to accrue the resources needed for follicle development, multi-egg production and a fasting incubation (*e.g.* Descamps *et al.* 2011).

Short-lived species however, such as tree swallows (*Tachycineta bicolor*), show a different pattern in which a seasonal regulation of CORT is not readily apparent, but variation among breeding individuals is apparent, revealing correlations between baseline CORT and fitness measures (Bonier *et al.* 2009). Early in the breeding season, during incubation, a negative relationship can be observed, which then shifts to a positive correlation later during nestling-provisioning (Fig. 1A). What this suggests is that, unlike long-lived puffins and eiders, increased GCs might signal a reduction in habitat quality or resource availability during the pre-breeding or incubation phase, in which case an adaptive response for swallows might be partial brood reduction or reduced investment in individual eggs. Then, during the more metabolically-demanding period of chick-rearing, when parents are foraging extensively, elevated baseline GCs may signal a need to increase foraging and provisioning effort to feed multiple chicks.

Finally, perhaps the best examples how life-history context can influence the endpoints of GC manipulation comes from a study of side-blotched lizards (*Uta stansburiana*). Within populations, this species displays six distinct phenotypes, as indicated by the colour of their throats. In female lizards, two throat colours correspond to alternative reproductive strategies: females carrying orange alleles, or "orange" females, also r-strategists that lay large clutches with smaller offspring. "Yellow" females lack the orange alleles, and are K-strategists that lay smaller clutches with larger eggs. When orange and yellow females were given similar mass-specific CORT implants, the results a classic life-history trade-off between reproduction and survival, but in opposite directions (Lancaster *et al.* 2008). Orange females invested more towards

reproduction at the expense of reduced survival, whereas yellow females favoured survival over reproduction (Fig. 1B).

Collectively, what these studies indicate is that there is a complex interaction between GCs, life-history, and breeding stages. The challenge for researchers is to be cognizant of these factors when formulating hypotheses and predictions for a GC manipulation study, within the most appropriate theoretical framework, and then to choose the most appropriate dose to best test those predictions.

Blocking, rather than enhancing, the effects of GCs

An alternate way to test for GC effects in vertebrates is to either block or dampen their effects, usually at the receptor level. However, most studies adopting this approach are laboratory studies, and often do not assess effects on life-history variation or fitness endpoints (e.g. birds-Breuner & Orchinik 2009; fish- Dunlap et al. 2011; salamanders- Wack et al. 2013). In a laboratory study of rainbow trout (Oncorhynchus mykiss) for example, mifepristone (RU-486, a glucocorticoid receptor [GR] antagonist) was used to suppress GR signaling, which resulted in reduced hypothalamus-pituitary-inter-renal axis (HPI) activity (Alderman et al. 2012). In a study of closely related pink salmon (O. gorbuscha) in an experimental spawning channel, metyrapone implants were used to suppress plasma cortisol levels in freely spawning females, but this treatment had no significant effect on reproductive behaviour, spawning success, or physiology (McConnachie et al. 2012). This study suggests for semelparous Pacific salmon, certain aspects of reproduction can become refractory to stress during spawning, at a time when cortisol levels are already exceedingly high (>290 ng ml⁻¹). Although not as commonly used as GC manipulations (increases), GC blocking studies have the potential to inform reproductive fitness studies in free-ranging animals and could be used in tandem with manipulation increases to address common hypotheses about the role of altered baseline GC levels. However, some caution is warranted when blocking or dampening GC receptors, as it may be difficult to compare and interpret manipulated receptor level effects versus manipulated circulating GC levels. This topic is beyond the scope of our discussion about baseline GC variations. One final word of caution, when blocking GCs, it is also important to adhere to relevant regulations that control the application of drugs to animals in the wild that could enter the human food chain (most relevant to harvested fish or wildlife targeted by hunters) given that such pharmaceuticals are typically dangerous for humans (*e.g.* RU-486 can abort human fetuses).

Hypotheses and predictions regarding experimental GC manipulations

Three published examples show how different life-history hypotheses can be used to provide a framework and foundation for predictions of effects of exogenous GC manipulations. In a classic example of a current reproduction versus survival study, breeding black-legged kittiwakes (*Rissa tridactyla*) were given a GC implant aimed at increasing baseline levels to concentrations associated with chronic stress (Angelier et al. 2009), or more specifically "to mirror prolonged energy constraints (type I allostatic overload, McEwen & Wingfield 2003) and the activation of an emergency life-history stage (Wingfield et al. 1998)". This manipulation is predicted to have negative effects on reproductive investment in the form of parental care, and ultimately negative fitness effects, similar to that observed in Silverin (1998). Indeed, there was a correlated decrease in prolactin levels (a hormone involved with some aspects of incubation behaviour and parental care; Williams 2012), as well as reduced nest attendance and reduced breeding success in GC-implanted individuals, which supports the hypothesis that increasing GCs will favor survival over reproduction. In contrast, in a study of breeding female macaroni penguins (Eudyptes chrysolophus), baseline levels of GC were manipulated more moderately, to test predictions of the GC-adaptation hypothesis, which predicts positive associations between baseline GC levels and reproductive and other fitness proxies (as defined by Bonier et al. 2009). In that study (Crossin et al. 2012), the implants were specifically targeting an increase within the range of normal baseline levels, not stress-induced levels, which led to positive effects on foraging behaviour, foraging success, and chick growth (*i.e.* fitness). Like the study of blacklegged kittiwakes, the predictions of the hypothesis matched the results. In a third study, breeding male Adélie penguins (Pygoscelis adéliae) were implanted with corticosterone, but there was sufficient uncertainty about whether the implants would raise plasma levels within the baseline range, or beyond this to stress levels (Thierry et al. 2013a). As such, the authors invoked both the current reproduction versus survival paradigm as well as the GC-adaptation hypothesis in the introduction to their study. By embracing this approach, the authors were open to alternate interpretations of their data, which is commendable given that they could not predict the precise effect of the corticosterone implants on reproductive investment, and given that the results ultimately fit both paradigms. What the study showed was that compared with sham-implanted penguins, CORT-implanted penguins experienced both costs and benefits. CORT manipulation was associated with brood reduction, with treated birds tending to hatch a single egg from their 2-egg clutches. However, the surviving chicks of GC-treated penguins did not differ in final mass or fledging success from control penguins, which could be interpreted as either a neutral or positive effect. By reducing clutch size to a single egg, the parent bird is ensuring that at least one chick will fledge, thus maximizing relative fitness. In a study of captive black-legged kittiwake chicks, GC treatment had again both costs and benefits (Kitaysky *et al.* 2003). Treated chicks outcompeted their nest-mate for food delivery from parents (resulting in brood reduction), which was deemed a positive effect for the treated chick. But this early developmental exposure to increased GC led to cognitive deficiencies later in life, thus representing a longer-term cost of the treatment.

Putting GC levels into a predictive context

As mentioned earlier, the GC dose delivered to study animals should be calibrated, a priori, to best suit the overarching hypotheses and predictions. Although one of our aims in this paper is to draw attention to the potentially restrictive scope of the current reproduction versus survival paradigm in studies of GC manipulations, this can be a perfectly suitable hypothesis in studies seeking to explore the effects of acute or chronic stress on some fitness measures, and when the exogenous GC dose needed is already known. However, when the effect of GC manipulation is less certain or unknown, then we suggest that alternate hypotheses that leave room for interpretation are necessary (e.g. the CORT-adaptation hypothesis). This could be necessary in situations where the GC manipulation inadvertently pushes individuals away from their endocrine optimum, which would then predict different effects of experimental GC increases as opposed to natural, endogenous GC increases. In other words, an HPA axis that is fighting to restore a phenotype to its baseline state after an experimental GC manipulation might be very different from an HPA axis that induced a particular endocrine phenotype naturally. This introduces the idea of "individual optimization", in which different individuals have different sensitivities to specific circulating hormone levels, the result of which is that, depending on the individual, different amounts of hormones are needed to sustain a common physiological function (Williams et al. 2008). As such, individuals maintain individually 'optimized' endocrine profiles in relation to their own individual constraints and investment history, and balance the relative costs and benefits accordingly. This has the potential to greatly complicate GC manipulations.

Understanding the effects of manipulations in the absence of pilot studies or previous research is important to the increasing number of studies using GC manipulations to test mechanisms of life-history variation, especially those using serial physiological sampling techniques and electronic tracking technologies in freely ranging animals (e.g. biotelemetry and biologging; Cooke et al. 2004; Ropert-Coudert & Wilson 2005; Rutz & Hays 2009; Crossin et al. 2014). Table 1 lists several recent studies that have used GC implants to glean mechanistic insight to reproductive investment strategies, as well as the overarching hypotheses that predict the effects of increased GC levels. The first thirteen studies are framed within the current reproduction versus survival paradigm, and for eleven the observed effect of GC manipulation on reproductive performance matched predictions. However, for two studies, the results did not match prediction. Criscuolo et al. (2005) is unique in having conducted a pilot study in which the study species, the common eider, was held captive so that the temporal change in plasma GC induced by the GC implant could be measured. This provided evidence that GC levels in the target species reached stress-induced levels, thus providing a good rationale for predicting negative effects of GC treatment on reproduction in the subsequent field study with the same species. However, the observed results did suggest a negative effect of GC increase on reproductive effort, as was predicted. The authors therefore discussed other potential factors that could have offset the negative effects of the implants, in this case re-feeding by parents. In the next study (Patterson et al. 2011), results of GC manipulation in breeding tree swallows might not have matched predictions in part because the implants increased GC within what was likely a baseline range rather than stress-induced levels. Here, an alternate interpretation wherein effects of baseline GC on reproduction could be predicted to be positive (e.g. the GC-fitness hypothesis; Bonier et al. 2009). Alternately, a different hypothesis could have been used to frame the study and its predictions (e.g. GC-adaptation). We do not mean to suggest that a hypothesis should be chosen to match results, only that alternate hypotheses should be considered in the discussion (or preferably before) about why a given hypothesis did not match predictions.

Unfortunately, most studies of wild, freely ranging animals do not include pilot studies on captive individuals of the species under study (as in Crisculolo *et al.* 2005). Such studies can be

very useful for targeting implant doses, and for choosing appropriate hypotheses and predictions. We realize however that this is not always possible due to logistical or other constraints. Barring such pilot studies, or prior knowledge of what specific implant are likely to achieve in terms of circulating plasma GC levels, it is important to choose inclusive, more broadly scoped, hypotheses, or multiple alternate hypotheses, so that results can be interpreted more freely without being forced into a single paradigm. From a technical perspective, we also urge that, when possible, controlled pilot studies are conducted so that GC implant doses can be calibrated to desired plasma level increases, and so that the shape of the dose response curve (e.g. the timecourse of circulating hormone levels in response to exogenous implantation) can be determined a priori. Finally, as we discussed earlier, GC dose considerations must also take into account the specific life-history context and reproductive stage of study animals, as these can have significant bearing on the response of individuals to GC manipulation. By so doing, researchers will be better positioned to design experimental studies that reveal the mechanisms underlying variation in fitness-related traits. Understanding the effects of GC variation is all the more salient given Boonstra's (2013b) recent suggestion that, despite the potential for pathological effects, chronic stress is assuredly an adaptive phenomena that ultimately promotes the fitness of animals in nature, although this may depend to some extent on the life-history context of the organisms under study (*e.g.* semelparous versus iteroparous, short-lived versus long-lived, etc.).

Acknowledgements

We extend thanks to Francis Bonier for her insights and suggestions on this paper. GTC, OPL, SJC and TDW are supported by the NSERC (Canada) Discovery Grant program. OPL and SJC are supported by the Canada Research Chairs program.

References

- Alderman, S.L., McGuire, A., Bernier, N.J. & Vijayan M.M. (2012) Central and peripheral glucocorticoid receptors are involved in the plasma cortisol response to an acute stressor in rainbow trout. *General and Comparative Endocrinology*, **176**, 79-85.
- Angelier, F., Clément-Chastel, C., Welcker, J., Gabrielsen, G.W. & Chastel, O. (2009) How does corticosterone affect parental behaviour and reproductive success? A study of prolactin in black-legged kittiwakes. *Functional Ecology*, 23, 784-793.
- Breuner, C.W., Patterson, S.H. & Hahn, T.P. (2008) In search of relationships between the acute adrenocortical response and fitness. *General and Comparative Endocrinology*, **157**, 288-295.
- Brown, C.R., Brown, M.B., Raouf, S.A., Smith, L.C. & Wingfield, J.C. (2005) Effects of endogenous steroid hormone levels on annual survival in cliff swallows. *Ecology*, 86, 1034-1046.
- Bonier, F., Martin, P.R., Moore, I.T. & Wingfield, J.C. (2009) Do baseline glucocorticoids predict fitness? *Trends in Ecology and Evolution*, **24**, 634-642.
- Bonier, F., Moore, I.T. & Robertson, R.J. (2011) The stress of parenthood? Increased glucocorticoids in birds with experimentally enlarged broods. Biology Letters, **7**, 944-946.
- Boonstra, R. (2013a) The ecology of stress: a marriage of disciplines. *Functional Ecology*, **27**, 7-10.
- Boonstra, R. (2013b) Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. *Functional Ecology*, **27**, 11-23.
- Breuner, C.W. & Orchinik, M. (2009) Pharmacological characterization of intracellular, membrane, and plasma binding sites for corticosterone in house sparrows. *General and Comparative Endocrinology*, **163**, 214-224.
- Cooke, S.J., Hinch, S.G., Wikelski, M., Andrews, R.D., Wolcott, T.G. & Butler, P.J. (2004)
 Biotelemetry: a mechanistic approach to ecology. *Trends in Ecology and Evolution*, **19**, 334-343.
- Cote, J., Clobert, J., Meylan, S. & Fitze, P. (2006) Experimental enhancement of corticosterone levels positively affects subsequent male survival. *Hormones and Behavior*, **49**, 320-327.
- Cree, A., Tyrrell, C.L., Preest, M.R., Thorburn, D. & Guillette, L.J. (2003) Protecting embryos from stress: corticosterone effects and the corticosterone response to capture and confinement

during pregnancy in a live-bearing lizard (*Hoplodactylus maculatus*). General and Comparative Endocrinology, **134**, 316-329.

- Crespi, E.J., Williams, T.D., Jessop, T.S. & Delehanty, B. (2013) Life history and the ecology of stress: how do glucocorticoid hormones influence life-history variation in animals? *Functional Ecology*, 27, 93-106.
- Criscuolo, F., Chastel, O., Bertile, F., Gabrielsen, G.W., Le Maho, Y. & Raclot, T. (2005) Corticosterone alone does not trigger a short term behavioural shift in incubating female common eiders *Somateria mollissima*, but does modify long term reproductive success. *Journal of Avian Biology*, **36**, 306-312.
- Crossin, G.T., Trathan, P.N., Phillips, R.A., Gorman, K.B., Dawson, A., Sakamoto, K.Q. & Williams, T.D. (2012) Corticosterone predicts foraging behavior and parental care in macaroni penguins. *American Naturalist*, **180**, E31-E41.
- Crossin, G.T., Cooke, S.J., Goldbogen, J.A. & Phillips, R.A. (2014) Tracking fitness in marine vertebrates: current knowledge and opportunities for future research. *Marine Ecology Progress Series*, **496**, 1-17.
- Dallman, M.F., Akana, S.F., Bhatnagar, S., Bell, M.E., Choi, S., Chu, A., Horsley, C., Levin, N., Meijer, O., Soriano, L.R., Strack, A.M. & Viau, V. (1999) Starvation: early signals, sensors and sequelae. *Endocrinology*, 140, 4015-4023.
- Descamps, S., Gilchrist, H.G., Love, O.P. & Bêty, J. (2011) Individual optimization of reproduction in a long-lived migratory bird: a test of the condition-dependent model of laying date and clutch size. *Functional Ecology*, **25**, 671-681.
- Dey, C.J., O'Connor, C.M., Gilmour, K.M., Van Der Kraak, G., Cooke, S.J. (2010) Behavioral and physiological responses of a wild teleost fish to cortisol and androgen manipulation during parental care. *Hormones and Behaviour*, 58, 599-605.
- Dunlap, K.D., Jasharia, D. & Pappas, K.M. (2011) Glucocorticoid receptor blockade inhibits brain cell addition and aggressive signaling in electric fish, *Apteronotus leptorhynchus*. *Hormones and Behaviour*, **60**, 275-283.
- Eriksen, M.S. Bakken, M., Espmark, Å., Braastad, B.O. & Salte, R. (2006) Prespawning stress in farmed Atlantic salmon *Salmo salar*: maternal cortisol exposure and hyperthermia during

embryonic development affect offspring survival, growth and incidence of malformations. *Journal of Fish Biology*, **69**, 114-129.

Fisher, R.A. (1930) The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

- Gonzalez-Jimena, V. & Fitze, P. (2012) Blood corticosterone levels and intersexual selection games: best-of-bad-job strategies of male common lizards. *Behavioural Ecology and Sociobiology*, **66**, 305-315.
- Groscolas, R., Lacroix, A. & Robin, J.-P. (2008) Spontaneous egg or chick abandonment in energy-depleted king penguins: A role for corticosterone and prolactin? *Hormones and Behavior*, **53**, 51-60.
- Harshman, L.G. & Zera, A.J. (2007) The cost of reproduction: the devil in the details. *Trends in Ecology and Evolution*, 22, 80-88.
- Hennin, H.L., Legagneux, P., Bêty, J., Williams, T.D., Gilchrist, G.H., Baker, T.M. & Love, O.P.
 (2014) Pre-breeding energetic management in an arctic-breeding sea duck. *Oecologia*, 000, 000-000.
- Hipfner, J.M. (2008) Matches and mismatches: ocean climate, prey phenology and breeding success in a zooplanktivorous seabird. *Marine Ecology Progress Series*, **368**, 295-304.
- Ketterson, E.D., Nolan, V.J., Cawthorn, M.J., Parker, P.G. & Ziegenfus, C. (1996) Phenotypic engineering: using hormones to explore the mechanistic and functional bases of phenotypic variation in nature. *Ibis*, **138**, 70-86.
- Ketterson, E.D. & Nolan, V.J. (1999) Adaptation, exaptation, and constraint: a hormonal perspective. *American Naturalist*, **153**, S4-S25.
- Kitaysky, A.S., Wingfield, J.C. & Piatt, J.F. (2001) Corticosterone facilitates begging and affects resource allocation in the black-legged kittiwake. *Behavioral Ecology*, **12**, 619-625.
- Kitaysky, A.S., Piatt, J.F., Hatch, S.A., Kitaiskaia, E.V., Benowitz-Fredericks, Z.M., Shultz, M.T. & Wingfield, J.C. (2010) Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds. *Functional Ecology*, 24, 2625-2637.
- Kitaysky, A.S., Kitaiskaia, E.V., Piatt, J.F. & Wingfield, J.C. (2003) Benefits and costs of increased levels of corticosterone in seabird chicks. *Hormones and Behavior*, **43**, 140-149.

- Lancaster, L.T., Hazard, L.C., Clobert, J. & Sinervo, B.R. (2008) Corticosterone manipulation reveals differences in hierarchical organization of multidimensional reproductive trade-offs in r-strategist and K-strategist females. *Journal of Evolutionary Biology*, **21**, 556-565.
- Landys, M.M., Ramenofsky, M. & Wingfield, J.C. (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. *General and Comparative Endocrinology*, **148**, 132-149.
- Love, O.P., Breuner, C.W., Vézina, F. & Williams, T.D. (2004) Mediation of a corticosteroneinduced reproductive conflict. *Hormones and Behavior*, **46**, 59-65.
- Love, O.P., Chin, E.H., Wynne-Edwards, K.E. & Williams, T.D. (2005) Stress hormones: a link between maternal condition and sex-biased reproductive investment. *American Naturalist*, 166, 751-766.
- Love, O.P. & Williams, T.D. (2008) The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. *American Naturalist*, **172**, E135-149.
- Love, O.P., McGowan, P.O. & Sherriff, M.J. (2013) Maternal adversity and ecological stressors in natural populations: the role of stress axis programming in individuals, with implications for populations and communities. *Functional Ecology*, 27, 81-92.
- Love, O.P., Bourgeon, S., Madliger, C.L., Semeniuk, C.A.D. & Williams, T.D. (2014) Evidence for baseline glucocorticoids as mediators of reproductive investment in a wild bird. *General & Comparative Endocrinology*, **199**, 65-69.
- Madliger, C.L. & Love, O.P. (2014) The need for a predictive, context-dependent approach to the application of stress hormones in conservation. *Conservation Biology*, **28**, 283-287.
- McConnachie, S.H., Cook, K.V., Patterson, D.A., Gilmour, K.M., Hinch, S.G., Farrell, A.P. & Cooke, S.J. (2013) Consequences of acute stress and cortisol manipulation on the physiology, behavior, and reproductive outcome of female Pacific salmon on spawning grounds. *Hormones and Behaviour*, **62**, 67-76.
- McEwen, B.S. & Wingfield, J.C. (2003) The concept of allostasis in biology and biomedicine. *Hormones and Behavior*, **43**, 2-15.

- Moore, I.T. & Mason, R.T. (2001) Behavioral and hormonal responses to corticosterone in the male red-sided garter snake, *Thamnophis sirtalis parietalis*. *Physiology & Behavior*, 72, 669-674.
- Nur, N. (1984) The consequences of brood size for breeding blue tits. I. Adult survival, weight change and the cost of reproduction. *Journal of Animal Ecology*, **53**, 479-496.
- Nur, N. (1988) The consequences of brood size for breeding blue tits. III. Measuring the cost of reproduction: survival, future fecundity, and differential dispersal. *Evolution*, **42**, 351-362.
- Ouyang J.Q., Sharp, P.J., Dawson, A., Quetting, M. & Hau, M. (2011) Hormone levels predict individual differences in reproductive success in a passerine bird. *Proceedings of the Royal Society B*, 278, 2537-2545.
- Ouyang J.Q., Muturi, M., Quetting, M. & Hau, M. (2013) Small increases in corticosterone before the breeding season increase parental investment but not fitness in a wild passerine bird. *Hormones and Behavior*, 63, 776-781.
- Patterson, S.H., Winkler, D.W. & Breuner, C.W. (2011) Glucocorticoids, individual quality and reproductive investment in a passerine bird. *Animal Behaviour*, **81**, 1239-1247.
- Pravosudov, V.V. (2003) Long-term moderate elevation of corticosterone facilitates avian foodcaching behaviour and enhances spatial memory. *Proceedings of the Royal Society B*, **270**, 2599-2604.
- Remage-Healey, L. & Romero, L.M. (2001) Corticosterone and insulin interact to regulate glucose and triglyceride levels during stress in a bird. *American Journal of Physiology: Regulatory, Integrative, and Comparative Physiology* 281, R994-R1003.
- Ropert-Coudert, Y. & Wilson, P.R. (2005) Trends and perspectives in animal-attached remote sensing. *Frontiers in Ecology and the Environment*, **3**, 437-444.
- Rutz, C. & Hays, G.C. (2009) New frontiers in biologging science. Biology Letters, 5, 289-292.
- Sheriff, M.J. & Love, O.P. (2013) Determining the adaptive potential of maternal stress. *Ecology Letters*, **16**, 271-280.
- Silverin, B. (1986) Corticosterone-binding proteins and behavioral effects of high plasma levels of corticosterone during the breeding period in the pied flycatcher. *General and Comparative Endocrinology*, **64**, 67-74.

- Silverin, B. (1998) Stress responses in birds. Poultry and Avian Biology Reviews, 9, 153-168.
- Sinervo, B. 1999. Mechanistic analysis of natural selection and a refinement of Lack's and Williams's principles. *American Naturalist*, **154**, S26-S42.
- Sinervo, B. & Basolo, A.L. (1996) Testing adaptation using phenotypic manipulations. In: Rose, M.L., Lauder, G.V. (Eds.), Adaptation. Academic Press, San Diego, pp. 149-185.
- Spée, M., Marchal, L., Thierry, A-M., Chastel, O., Enstipp, M., Le Maho, Y., Beaulieu, M. & Raclot, T. (2011) Exogenous corticosterone mimics a late fasting stage in captive Adélie penguins (*Pygoscelis adéliae*). Journal of Physiological Regulation and Integrative and Comparative Physiology, **300**, R1241-R1249.
- Stearns, S.C. (1992) The Evolution of Life-histories. Oxford University Press, Oxford.
- Thierry, A-M., Massemin, S., Handrich, Y. & Raclot, T. (2013a) Elevated corticosterone levels and severe weather conditions decrease parental investment of incubating Adélie penguins. *Hormones and Behaviour*, 63, 475-483.
- Thierry, A-M., Ropert-Coudert, Y. & Raclot, T. (2013b) Elevated corticosterone levels decrease reproductive output of chick-rearing Adélie penguins but do not affect chick mass at fledging. *Conservation Physiology*, 1, 000-000.
- Williams, C.T., Kitaysky, A.S., Kettle, A.B. & Buck C.L. (2008) Corticosterone levels of tufted puffins vary with breeding stage, body condition index, and reproductive performance. *General and Comparative Endocrinology*, **158**, 29-35.
- Williams, T.D. (2012) Physiological Adaptations for Breeding in Birds. Princeton University Press, Princeton.
- Wingfield, J.C., Maney, D.L., Breuner, C.W., Jacobs, J.D., Lynn, S.E., Ramenofsky, M. & Richardson, R.D. (1998) Ecological bases of hormone-behavior interactions: the 'emergency life history stage'. *American Zoologist*, **38**, 191-206.
- Wack, C.L., Ratay M.K. & Woodley, S.K. (2013) Effects of corticosterone on locomotory activity in red-legged salamanders. *Herpetologica*, **69**, 118-126.
- Zera, A.J. Harshman, L.G. (2001) The physiology of life-history trade-offs in animals. *Annual Review of Ecology and Systematics*, **32**, 95-126.

Figure legends

Fig 1: Hypothetical breeding-level responses to mass-specific corticosterone (CORT) manipulation in species with different life-histories (Panel A). In tree swallows (*Tachycineta bicolor*), natural baseline variation in CORT showed a negative correlation with clutch size early in reproduction, but the relationship changed during later in the season to yield a positive correlation with fledging success (*e.g.* Bonier *et al.* 2009). We might therefore expect experimentally increased CORT to have even greater negative effects at laying, and more positive effects at chick-rearing. In contrast, baseline CORT in laying tufted puffins (*Fratercula cirrhata*) was positively correlated with clutch size, where as no discernable correlation with fledging success was evident later in the breeding season (Williams *et al.* 2008). At a given reproductive stage, experimental CORT manipulation in long-lived puffins might thus produce different effects than in short-lived swallows.

In panel B, differential responses to CORT manipulation have been observed in female side-blotched lizards (*Uta stansburiana*) possessing different life histories. CORT-implanted "yellow" K-strategists traded reproduction for survival, whereas the opposite was observed in "orange" r-strategists (see Lancaster *et al.* 2008).

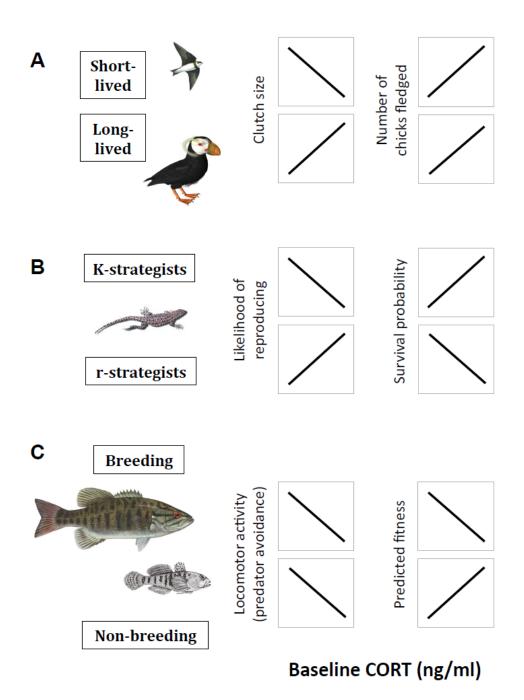
In panel C, cortisol implants were found to negatively impact semelparous, female pink salmon (*Oncorhynchus gorbuscha*) by limiting spawning ground longevity the number eggs spawned (McConnachie *et al.* 2013), presumably via faster depletion of finite somatic energy reserves. In an iteropoarous species like smallmouth bass (*Micropterus dolomieu*), it is unclear what effect that baseline cortisol manipulation might have on spawning ground longevity, but it is possible that increased cortisol could provide more energy for nest protection, and thus increasing reproductive success.

1 Table 1: Studies where direct metrics of current reproductive effort were measured in response to exogenous GC treatment. Studies

2 where exogenous GC and survival relationships were measured outside the period of current reproduction were excluded.

Animal model	Study framework	Exogenous GC effect on plasma levels	Predicted effect on reproduction	Observed effect on reproduction	Results match predictions?	Reference
Pied flycatchers,	Current reproduction vs. survival	stress-induced	negative	negative	yes	Silverin 1986
Ficedula hypoleuca						
Common geckos,	Current reproduction vs. survival #	stress-induced	negative	negative	yes	Cree <i>et al</i> . 2003
Hoplodactylus maculatus						
Red-sided garter snake,	Current reproduction vs. survival	stress-induced	negative	negative	yes	Moore & Mason
Thamnophis sirtalis parietalis						2001
Common lizards,	Current reproduction vs. survival	stress-induced	negative	negative	yes	Côté <i>et al</i> . 2006
Lacerta vivipara						
Atlantic salmon,	Current reproduction vs. survival	stress-induced	negative	negative	yes	Eriksen <i>et al</i> . 2006
Salmo salar						
Pink salmon,	Current reproduction vs. survival	stress-induced	negative	negative	yes	McConnachie <i>et al</i> .
Oncorhynchus gorbuscha						2012
Black-legged kittiwakes,	Current reproduction vs. survival	stress-induced	negative	negative	yes	Angelier <i>et al</i> . 2009
Rissa tridactyla						
Black-legged kittiwakes,	Current reproduction vs. survival	stress-induced	negative (parents)	negative	yes	Kitaysky <i>et al</i> . 2001
Rissa tridactyla						
Adélie penguins,	Current reproduction vs. survival #	stress-induced *	negative	negative	yes	Spée <i>et al</i> . 2011
Pygoscelis adéliae						
Adélie penguins,	Current reproduction vs. survival	stress-induced	negative	negative	yes	Thierry <i>et al</i> . 2013b
Pygoscelis adéliae						
Smallmouth bass,	Current reproduction vs. survival #	stress-induced	negative	negative	yes	Dey <i>et al</i> . 2010
Micropterus dolomieu						

Common eiders,	Current reproduction vs. survival	stress-induced	negative	none	no	Criscuolo <i>et al</i> . 2005
Somateria mollissima						
Tree swallows,	Current reproduction vs. survival	increased baseline	positive	none	no	Patterson et al. 2011
Tachycineta bicolor						
Adélie penguins,	Current reproduction vs. survival #,	uncertain	negative/positive	negative/positive	yes	Thierry <i>et al</i> . 2013a
Pygoscelis adéliae	GC-adaptation +					
Common lizards,	Current reproduction vs. survival #,	moderate,	moderate=pos	moderate=pos	yes	Gonzalez-Jimena &
Lacerta vivipara	GC-adaptation +	stress-induced	stress-induced=neg	stress-induced=neg		Fitze 2012
Macaroni penguins,	GC-adaptation	increased baseline	positive	positive	yes	Crossin <i>et al</i> . 2012
Eudyptes chrysolophus						
Great tits,	GC-adaptation +	increased baseline	positive	positive	yes	Ouyang <i>et al</i> . 2013
Parus major						


3 # = Although not explicitly stated, the predictions in this study match those of a current reproduction versus survival hypothesis.

4 *†* = Although not explicitly stated, the predictions of this study match those of the GC-adaptation hypothesis as outlined by Bonier *et*

5 *al.*, 2009.

6 * = Individuals were given either a 'high' dose GC implant, or a 'low' dose implant. The high dose led to nest abandonment, whereas

7 the low dose did not.

