2,443 research outputs found

    Foreword

    Get PDF

    Migration after union dissolution in the United States:The role of non-resident family

    Get PDF
    Separation from a spouse or cohabiting partner is associated with a high likelihood of moving, even over long distances. In this paper, we use longitudinal data from the Panel Study of Income Dynamics for the United States to analyze the role of non-resident family in the migration of separated people immediately after and in the years following union dissolution. We explore both migration in general and return migration among separated people, drawing comparisons to married and never-married people. We find that having parents, children, or siblings living close by substantially deters migration, especially among separated people. We also find marked positive effects of having family members in the county where the respondent grew up on the likelihood of returning there. Separated people are especially likely to return, compared to others, if they have parents in their county of origin. Furthermore, a lack of an effect of years of education on migration, and a negative effect of this variable on return migration, suggest that migration after separation is less related to human-capital considerations than other types of migration

    GPS Position and Heading Circuitry for Ships

    Get PDF
    Circuit boards that contain radio-frequency (RF) and digital circuitry have been developed by NASA to satisfy a requirement of the Port of Houston Authority for relatively inexpensive Global Positioning System (GPS) receivers that indicate the azimuthal headings as well as the positions of ships. The receiver design utilizes the unique architecture of the Mitel commercial chip-set, which provides for an accurate GPS-based heading-determination device. The major components include two RF front ends (each connected to a separate antenna), a surface-acoustic-wave intermediate-frequency filter between second- and third-stage mixers, a correlator, and a reduced-instruction- set computer. One of the RF front ends operates as a master, the other as a slave. Both RF front ends share a 10-MHz sinusoidal clock oscillator, which provides for more accurate carrier phase measurements between the two antennas. The outputs of the RF front ends are subjected to conventional GPS processing. The commercial-based chip-set design approach provides an inexpensive open architecture GPS platform, which can be used in developing and implementing unique GPS-heading and attitude-determination algorithms for specific applications. The heading is estimated from the GPS position solutions of the two antennas by an algorithm developed specifically for this application. If a third (and preferably a fourth) antenna were added, it would be possible to estimate the attitude of the GPS receiver in three dimensions instead of only its heading in a horizontal plane

    Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis

    Get PDF
    Adhirons are robust, well expressing, peptide display scaffold proteins, developed as an effective alternative to traditional antibody binding proteins for highly specific molecular recognition applications. This paper reports for the first time the use of these versatile proteins for material binding, and as tools for controlling material synthesis on the nanoscale. A phage library of Adhirons, each displaying two variable binding loops, was screened to identify specific proteins able to interact with [100] faces of cubic magnetite nanoparticles. The selected variable regions display a strong preference for basic residues such as lysine. Molecular dynamics simulations of amino acid adsorption onto a [100] magnetite surface provides a rationale for these interactions, with the lowest adsorption energy observed with lysine. These proteins direct the shape of the forming nanoparticles towards a cubic morphology in room temperature magnetite precipitation reactions, in stark contrast to the high temperature, harsh reaction conditions currently used to produce cubic nanoparticles. These effects demonstrate the utility of the selected Adhirons as novel magnetite mineralization control agents using ambient aqueous conditions. The approach we outline with artificial protein scaffolds has the potential to develop into a toolkit of novel additives for wider nanomaterial fabrication

    Novel methods for spatial prediction of soil functions within landscapes (SP0531)

    Get PDF
    Previous studies showed that soil patterns could be predicted in agriculturally managed landscapes by modelling and extrapolating from extensive existing but related integrated datasets. Based on these results we proposed to develop and apply predictive models of the relationships between environmental data and known soil patterns to predict capacity for key soil functions within diverse landscapes for which there is little detailed underpinning soil information available. Objectives were: To develop a high-level framework in which the non-specialist user-community could explore questions. To generate digital soil maps for three selected catchments at a target resolution of 1:50000 to provide the base information for soil function prediction. To use a modelling approach to predict the performance of key soil functions in catchments undergoing change but where only sparse or low resolution soil survey data are available. To use a modelling approach to assess the impact of different management scenarios and/or environmental conditions on the delivery of multiple soil functions within a catchment. To create a detailed outline of the requirements for ground-truthing to test the predicted model outputs at a catchment scale. To contribute to the development of a high-level framework for decision makers

    Ice sheet and climate processes driving the uncertainty in projections of future sea level rise: Findings from a structured expert judgement approach.

    Get PDF
    The ice sheets covering Antarctica and Greenland present the greatest uncertainty in, and largest potential contribution to, future sea level rise. The uncertainty arises from a paucity of suitable observations covering the full range of ice sheet behaviors, incomplete understanding of the influences of diverse processes, and limitations in defining key boundary conditions for the numerical models. To investigate the impact of these uncertainties on ice sheet projections we undertook a structured expert judgement study. Here, we interrogate the findings of that study to identify the dominant drivers of uncertainty in projections and their relative importance as a function of ice sheet and time. We find that for the 21st century, Greenland surface melting, in particular the role of surface albedo effects, and West Antarctic ice dynamics, specifically the role of ice shelf buttressing, dominate the uncertainty. The importance of these effects holds under both a high-end 5°C global warming scenario and another that limits global warming to 2°C. During the 22nd century the dominant drivers of uncertainty shift. Under the 5°C scenario, East Antarctic ice dynamics dominate the uncertainty in projections, driven by the possible role of ice flow instabilities. These dynamic effects only become dominant, however, for a temperature scenario above the Paris Agreement 2°C target and beyond 2100. Our findings identify key processes and factors that need to be addressed in future modeling and observational studies in order to reduce uncertainties in ice sheet projections

    A geometric proof of the Kochen-Specker no-go theorem

    Full text link
    We give a short geometric proof of the Kochen-Specker no-go theorem for non-contextual hidden variables models. Note added to this version: I understand from Jan-Aake Larsson that the construction we give here actually contains the original Kochen-Specker construction as well as many others (Bell, Conway and Kochen, Schuette, perhaps also Peres).Comment: This paper appeared some years ago, before the author was aware of quant-ph. It is relevant to recent developments concerning Kochen-Specker theorem

    The Metagalactic Ionizing Radiation Field at Low Redshift

    Get PDF
    We compute the ionizing radiation field at low redshift, arising from Seyferts, QSOs, and starburst galaxies. This calculation combines recent Seyfert luminosity functions, extrapolated ultraviolet fluxes from our IUE-AGN database, and a new intergalactic opacity model based on Hubble Space Telescope and Keck Ly-alpha absorber surveys. At z = 0 for AGN only, our best estimate for the specific intensity at 1 Ryd is I_0 = 1.3 (+0.8/-0.5) x 10^-23 ergs/cm^2/s/Hz/sr, independent of H_0, Omega_0, and Lambda. The one-sided ionizing photon flux is Phi_ion = 3400 (+2100/-1300) photons/cm^2/s, and the H I photoionization rate is Gamma_HI = 3.2 (+2.0/-1.2) x 10^-14 s^-1 for alpha_s = 1.8. We also derive Gamma_ HI for z = 0 - 4. These error ranges reflect uncertainties in the spectral indexes for the ionizing EUV (alpha_s = 1.8 +/- 0.3) and the optical/UV (alpha_UV = 0.86 +/- 0.05), the IGM opacity model, the range of Seyfert luminosities (0.001 - 100 L*) and the completeness of the luminosity functions. Our estimate is a factor of three lower than the most stringent upper limits on the ionizing background (Phi_ion < 10^4 photons/cm^2/s) obtained from H-alpha observations in external clouds, and it lies within the range implied by other indirect measures. Starburst galaxies with a sufficiently large Lyman continuum escape fraction, f_ esc > 0.05, may provide a comparable background to AGN, I_0 (z=0) = 1.1 (+1.5/-0.7) x 10^{-23). An additional component of the ionizing background of this magnitude would violate neither upper limits from H-alpha observations nor the acceptable range from other measurements.Comment: 30 pages, 9 figures, accepted for Astronomical J. (Oct. 1999
    corecore