552 research outputs found
Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp
Background:
Figs and fig-pollinating wasps are obligate mutualists that have coevolved for ca 90
million years. They have radiated together, but do not show strict cospeciation. In particular, it is
now clear that many fig species host two wasp species, so there is more wasp speciation than fig
speciation. However, little is known about how fig wasps speciate.
Results: We studied variation in 71 fig-pollinating wasps from across the large geographic range
of Ficus rubiginosa in Australia. All wasps sampled belong to one morphological species (Pleistodontes
imperialis), but we found four deep mtDNA clades that differed from each other by 9–17%
nucleotides. As these genetic distances exceed those normally found within species and overlap
those (10–26%) found between morphologically distinct Pleistodontes species, they strongly suggest
cryptic fig wasp species. mtDNA clade diversity declines from all four present in Northern
Queensland to just one in Sydney, near the southern range limit. However, at most sites multiple
clades coexist and can be found in the same tree or even the same fig fruit and there is no evidence
for parallel sub-division of the host fig species. Both mtDNA data and sequences from two nuclear
genes support the monophyly of the "P. imperialis complex" relative to other Pleistodontes species,
suggesting that fig wasp divergence has occurred without any host plant shift. Wasps in clade 3
were infected by a single strain (W1) of Wolbachia bacteria, while those in other clades carried a
double infection (W2+W3) of two other strains.
Conclusion:
Our study indicates that cryptic fig-pollinating wasp species have developed on a
single host plant species, without the involvement of host plant shifts, or parallel host plant
divergence. Despite extensive evidence for coevolution between figs and fig wasps, wasp speciation
may not always be linked strongly with fig speciation
Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule
We study a two-dimensional cellular automaton (CA), called Diffusion Rule
(DR), which exhibits diffusion-like dynamics of propagating patterns. In
computational experiments we discover a wide range of mobile and stationary
localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze
spatio-temporal dynamics of collisions between localizations, and discuss
possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat
Review article: MHD wave propagation near coronal null points of magnetic fields
We present a comprehensive review of MHD wave behaviour in the neighbourhood
of coronal null points: locations where the magnetic field, and hence the local
Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the
Alfven wave and the fast and slow magnetoacoustic waves, has been investigated
in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null
points, for a variety of assumptions, configurations and geometries. In
general, it is found that the fast magnetoacoustic wave behaviour is dictated
by the Alfven-speed profile. In a plasma, the fast wave is focused
towards the null point by a refraction effect and all the wave energy, and thus
current density, accumulates close to the null point. Thus, null points will be
locations for preferential heating by fast waves. Independently, the Alfven
wave is found to propagate along magnetic fieldlines and is confined to the
fieldlines it is generated on. As the wave approaches the null point, it
spreads out due to the diverging fieldlines. Eventually, the Alfven wave
accumulates along the separatrices (in 2D) or along the spine or fan-plane (in
3D). Hence, Alfven wave energy will be preferentially dissipated at these
locations. It is clear that the magnetic field plays a fundamental role in the
propagation and properties of MHD waves in the neighbourhood of coronal null
points. This topic is a fundamental plasma process and results so far have also
lead to critical insights into reconnection, mode-coupling, quasi-periodic
pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note
this is a 2011 paper, not a 2010 pape
Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice
Motivated by the large strain shear of loose granular materials we introduced
a model which consists of consecutive optimization and restructuring steps
leading to a self organization of a density field. The extensive connections to
other models of statistical phyics are discussed. We investigate our model on a
hierarchical lattice which allows an exact asymptotic renormalization
treatment. A surprisingly close analogy is observed between the simulation
results on the regular and the hierarchical lattices. The dynamics is
characterized by the breakdown of ergodicity, by unusual system size effects in
the development of the average density as well as by the age distribution, the
latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also:
cond-mat/020920
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
400 Years of summer hydroclimate from stable isotopes in Iberian trees.
Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to independent multicentury sea level pressure and drought reconstructions for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-year reconstructions of the frequency of occurrence of extreme conditions in late spring and summer hydroclimate
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
- …
