500 research outputs found

    Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp

    Get PDF
    Background: Figs and fig-pollinating wasps are obligate mutualists that have coevolved for ca 90 million years. They have radiated together, but do not show strict cospeciation. In particular, it is now clear that many fig species host two wasp species, so there is more wasp speciation than fig speciation. However, little is known about how fig wasps speciate. Results: We studied variation in 71 fig-pollinating wasps from across the large geographic range of Ficus rubiginosa in Australia. All wasps sampled belong to one morphological species (Pleistodontes imperialis), but we found four deep mtDNA clades that differed from each other by 9–17% nucleotides. As these genetic distances exceed those normally found within species and overlap those (10–26%) found between morphologically distinct Pleistodontes species, they strongly suggest cryptic fig wasp species. mtDNA clade diversity declines from all four present in Northern Queensland to just one in Sydney, near the southern range limit. However, at most sites multiple clades coexist and can be found in the same tree or even the same fig fruit and there is no evidence for parallel sub-division of the host fig species. Both mtDNA data and sequences from two nuclear genes support the monophyly of the "P. imperialis complex" relative to other Pleistodontes species, suggesting that fig wasp divergence has occurred without any host plant shift. Wasps in clade 3 were infected by a single strain (W1) of Wolbachia bacteria, while those in other clades carried a double infection (W2+W3) of two other strains. Conclusion: Our study indicates that cryptic fig-pollinating wasp species have developed on a single host plant species, without the involvement of host plant shifts, or parallel host plant divergence. Despite extensive evidence for coevolution between figs and fig wasps, wasp speciation may not always be linked strongly with fig speciation

    400 Years of summer hydroclimate from stable isotopes in Iberian trees.

    Get PDF
    Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to independent multicentury sea level pressure and drought reconstructions for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-year reconstructions of the frequency of occurrence of extreme conditions in late spring and summer hydroclimate

    Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule

    Get PDF
    We study a two-dimensional cellular automaton (CA), called Diffusion Rule (DR), which exhibits diffusion-like dynamics of propagating patterns. In computational experiments we discover a wide range of mobile and stationary localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze spatio-temporal dynamics of collisions between localizations, and discuss possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat

    Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice

    Full text link
    Motivated by the large strain shear of loose granular materials we introduced a model which consists of consecutive optimization and restructuring steps leading to a self organization of a density field. The extensive connections to other models of statistical phyics are discussed. We investigate our model on a hierarchical lattice which allows an exact asymptotic renormalization treatment. A surprisingly close analogy is observed between the simulation results on the regular and the hierarchical lattices. The dynamics is characterized by the breakdown of ergodicity, by unusual system size effects in the development of the average density as well as by the age distribution, the latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also: cond-mat/020920

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a β=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Permafrost landscape history shapes fluvial chemistry, ecosystem carbon balance, and potential trajectories of future change

    Get PDF
    Intensifying permafrost thaw alters carbon cycling by mobilizing large amounts of terrestrial substrate into aquatic ecosystems. Yet, few studies have measured aquatic carbon fluxes and constrained drivers of ecosystem carbon balance across heterogeneous Arctic landscapes. Here, we characterized hydrochemical and landscape controls on fluvial carbon cycling, quantified fluvial carbon fluxes, and estimated fluvial contributions to ecosystem carbon balance across 33 watersheds in four ecoregions in the continuous permafrost zone of the western Canadian Arctic: unglaciated uplands, ice-rich moraine, and organic-rich lowlands and till plains. Major ions, stable isotopes, and carbon speciation and fluxes revealed patterns in carbon cycling across ecoregions defined by terrain relief and accumulation of organics. In previously unglaciated mountainous watersheds, bicarbonate dominated carbon export (70% of total) due to chemical weathering of bedrock. In lowland watersheds, where soil organic carbon stores were largest, lateral transport of dissolved organic carbon (50%) and efflux of biotic CO2 (25%) dominated. In watersheds affected by thaw-induced mass wasting, erosion of ice-rich tills enhanced chemical weathering and increased particulate carbon fluxes by two orders of magnitude. From an ecosystem carbon balance perspective, fluvial carbon export in watersheds not affected by thaw-induced wasting was, on average, equivalent to 6%–16% of estimated net ecosystem exchange (NEE). In watersheds affected by thaw-induced wasting, fluvial carbon export approached 60% of NEE. Because future intensification of thermokarst activity will amplify fluvial carbon export, determining the fate of carbon across diverse northern landscapes is a priority for constraining trajectories of permafrost region ecosystem carbon balance
    corecore