456 research outputs found

    The Evolution of Legal Risks Pertaining to Patch Management and Vulnerability Management

    Get PDF
    This article begins with an overview, in non-technical terms, of the tools generally available and processes implemented for vulnerability management and patch management. Section II identifies some of the evolving security standards that regulators and plaintiffs may rely on to show that companies are legally required to have vulnerability management and patch management. Section III identifies U.S. legal implications of vulnerability management and patch management and factors that a court and regulators may consider

    Suppressed CO emission and high G/D ratios in z=2 galaxies with sub-solar gas-phase metallicity

    Get PDF
    We study a population of significantly sub-solar enrichment galaxies at z=1.99, to investigate how molecular gas, dust and star-formation relate in low-metallicity galaxies at the peak epoch of star-formation. We target our sample with several deep ALMA and VLA datasets, and find no individual detections of CO[4-3], CO[1-0] or dust, in stark contrast to the >60% detection rate expected for solar-enrichment galaxies with these MS Halpha SFRs. We find that both low and high density molecular gas (traced by CO[1-0] and CO[4-3] respectively) are affected by the low enrichment, showing sample average (stacked) luminosity deficits >0.5-0.7 dex below expectations. This is particularly pertinent for the use of high-J CO emission as a proxy of instantaneous star-formation rate. Our individual galaxy data and stacked constraints point to a strong inverse dependence ∝Zγ of gas-to-dust ratios (G/D) and CO-to-H2 conversion factors (aco) on metallicity at z∼2, with γG/D<-2.2 and γαCO<-0.8, respectively. We quantify the importance of comparing G/D and aco vs. metallicity trends from the literature on a common, suitably normalised metallicity scale. When accounting for systematic offsets between different metallicity scales, our z∼2 constraints on these scaling relations are consistent with the corresponding relations for local galaxies. However, among those local relations, we favour those with a steep/double power-law dependence of G/D on metallicity. Finally, we discuss the implications of these findings for (a) gas mass measurements for sub-M∗ galaxies, and (b) efforts to identify the characteristic galaxy mass scale contributing most to the comoving molecular gas density at z=2

    Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA

    Get PDF
    We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τ<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core

    Deciphering the Activity and Quiescence of High-redshift Cluster Environments : ALMA Observations of Cl J1449+0856 at z=2

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array observations of the 870 mu m continuum and CO(4-3) line emission in the core of the galaxy cluster Cl J1449+0856 at z = 2, a near-IR-selected, X-ray-detected system in the mass range of typical progenitors of today's massive clusters. The 870 mu m map reveals six F-870 mu m > 0.5 mJy sources spread over an area of 0.07 arcmin(2), giving an overdensity of a factor of similar to 10 (6) with respect to blank-field counts down to F-870 mu m > 1 mJy (> 0.5 mJy). On the other hand, deep CO(4-3) follow-up confirms membership of three of these sources but suggests that the remaining three, including the brightest 870 mu m sources in the field (F-870 mu m greater than or similar to 2 mJy), are likely interlopers. The measurement of 870 mu m continuum and CO(4-3) line fluxes at the positions of previously known cluster members provides a deep probe of dusty star formation occurring in the core of this high-redshift structure, adding up to a total star formation rate of similar to 700 +/- 100 M-circle dot yr(-1) and yielding an integrated star formation rate density of similar to 10(4) M-circle dot yr(-1) Mpc(-3), five orders of magnitude larger than in the field at the same epoch, due to the concentration of star-forming galaxies in the small volume of the dense cluster core. The combination of these observations with previously available Hubble Space Telescope imaging highlights the presence in this same volume of a population of galaxies with already suppressed star formation. This diverse composition of galaxy populations in Cl J1449+0856 is especially highlighted at the very cluster center, where a complex assembly of quiescent and star-forming sources is likely forming the future brightest cluster galaxy.Peer reviewe

    Was Sinn Féin dying? A quantitative post-mortem of the party's decline and the emergence of Fianna Fáil

    Get PDF
    This article calls for a reappraisal of the consensus surrounding the split within Sinn Féin in 1926 that led to the foundation of Fianna Fáil. It demonstrates that quantitative factors cited to demonstrate Sinn Féin’s “terminal” decline – finances, cumann numbers, and election results – and to explain de Valera’s decision to leave Sinn Féin and establish a rival republican organisation, Fianna Fáil, do not provide sufficient objective grounds to explain the republican leader’s actions. This article demonstrates that Sinn Féin’s election results during the period in question (1923-1926) were encouraging and the decline in finances and cumann numbers can be explained by the fact that the base year used to compare progress was 1923, an election year. Moreover, this article compares the performance of Sinn Féin to the first five years of Fianna Fáil (1926-1931) to show that what has been interpreted as terminal decline can also be attributed to normal inter-election lulls in party activity. Correspondingly, subjective factors – e.g. personal rivalries, differences in ideology, organisational style and levels of patience in terms of achieving political power – were most likely the determining factors rather than organisational decline

    Rotation Curves in z ∼ 1–2 Star-forming Disks: Comparison of Dark Matter Fractions and Disk Properties for Different Fitting Methods

    Get PDF
    We present a follow-up analysis examining the dynamics and structures of 41 massive, large star-forming galaxies at z~0.67-2.45 using both ionized and molecular gas kinematics. We fit the galaxy dynamics with models consisting of a bulge, a thick, turbulent disk, and a NFW dark matter halo, using code that fully forward models the kinematics, including all observational and instrumental effects. We explore the parameter space using Markov Chain Monte Carlo (MCMC) sampling, including priors based on stellar and gas masses and disk sizes. We fit the full sample using extracted 1D kinematic profiles. For a subset of 14 well-resolved galaxies, we also fit the 2D kinematics. The MCMC approach robustly confirms the results from least-squares fitting presented in Paper I (Genzel et al. 2020): the sample galaxies tend to be baryon-rich on galactic scales (within one effective radius). The 1D and 2D MCMC results are also in good agreement for the subset, demonstrating that much of the galaxy dynamical information is captured along the major axis. The 2D kinematics are more affected by the presence of non-circular motions, which we illustrate by constructing a toy model with constant inflow for one galaxy that exhibits residual signatures consistent with radial motions. This analysis, together with results from Paper I and other studies, strengthens the finding that massive, star-forming galaxies at z~1-2 are baryon-dominated on galactic scales, with lower dark matter fractions towards higher baryonic surface densities. Finally, we present details of the kinematic fitting code used in this analysis.Comment: Accepted for publication in ApJ (23 pages, 8 figures, 5 tables

    Rotation Curves in z ∼ 1–2 Star-forming Disks: Evidence for Cored Dark Matter Distributions

    Get PDF
    We report high quality, Halpha or CO rotation curves (RCs) to several Re for 41 large, massive, star-forming disk galaxies (SFGs), across the peak of cosmic galaxy evolution (z~0.67-2.45), taken with the ESO-VLT, the LBT and IRAM-NOEMA. Most RC41 SFGs have reflection symmetric RCs plausibly described by equilibrium dynamics. We fit the major axis position-velocity cuts with beam-convolved, forward modeling with a bulge, a turbulent rotating disk, and a dark matter (DM) halo. We include priors for stellar and molecular gas masses, optical light effective radii and inclinations, and DM masses from abundance matching scaling relations. Two-thirds or more of the z>1.2 SFGs are baryon dominated within a few Re of typically 5.5 kpc, and have DM fractions less than maximal disks (=0.12). At lower redshift (z<1.2) that fraction is less than one-third. DM fractions correlate inversely with the baryonic angular momentum parameter, baryonic surface density and bulge mass. Inferred low DM fractions cannot apply to the entire disk & halo but more plausibly reflect a flattened, or cored, inner DM density distribution. The typical central 'DM deficit' in these cores relative to NFW distributions is ~30% of the bulge mass. The observations are consistent with rapid radial transport of baryons in the first generation massive gas rich halos forming globally gravitationally unstable disks, and leading to efficient build-up of massive bulges and central black holes. A combination of heating due to dynamical friction and AGN feedback may drive DM out of the initial cusps.Comment: 15 figures, 4 tables, accepted for publication in Ap

    Rotation Curves in z~1-2 Star-Forming Disks: Evidence for Cored Dark Matter Distributions

    Get PDF
    We report high-quality, Hα or CO rotation curves (RCs) to several R e for 41 large, massive, star-forming disk galaxies (SFGs) across the peak of cosmic galaxy evolution (z ~ 0.67-2.45), taken with the ESO-VLT, the LBT and IRAM-NOEMA. Most RC41 SFGs have reflection-symmetric RCs plausibly described by equilibrium dynamics. We fit the major axis position-velocity cuts using beam-convolved forward modeling generated in three dimensions, with models that include a bulge and turbulent disk component embedded in a dark matter (DM) halo. We include priors for stellar and molecular gas masses, optical light effective radii and inclinations, and DM masses from abundance-matching scaling relations. Two-thirds or more of the z ≥ 1.2 SFGs are baryon dominated within a few R e of typically 5.5 kpc and have DM fractions less than maximal disks (median fDM(Re)=0.12\langle {f}_{\mathrm{DM}}({R}_{e})\rangle =0.12). At lower redshift (z < 1.2), that fraction is less than one-third. DM fractions correlate inversely with the baryonic angular momentum parameter, baryonic surface density, and bulge mass. Inferred low DM fractions cannot apply to the entire disk and halo but more plausibly reflect a flattened, or cored, inner DM density distribution. The typical central "DM deficit" in these cores relative to Navarro-Frenk-White (NFW) distributions is ~30% of the bulge mass. The observations are consistent with rapid radial transport of baryons in the first-generation massive gas-rich halos forming globally gravitationally unstable disks and leading to efficient build-up of massive bulges and central black holes. A combination of heating due to dynamical friction and AGN feedback may drive DM out of the initial cusps.This work was supported in part by DFG/DIP grant STE/1869 2-1/GE 625/17-

    The [C II] emission as a molecular gas mass tracer in galaxies at low and high redshift

    Get PDF
    We present ALMA Band 9 observations of the [C II]158um emission for a sample of 10 main-sequence galaxies at redshift z ~ 2, with typical stellar masses (log M*/Msun ~ 10.0 - 10.9) and star formation rates (~ 35 - 115 Msun/yr). Given the strong and well understood evolution of the interstellar medium from the present to z = 2, we investigate the behaviour of the [C II] emission and empirically identify its primary driver. We detect [C II] from six galaxies (four secure, two tentative) and estimate ensemble averages including non detections. The [C II]-to-infrared luminosity ratio (L[C II]/LIR) of our sample is similar to that of local main-sequence galaxies (~ 2 x 10^-3), and ~ 10 times higher than that of starbursts. The [C II] emission has an average spatial extent of 4 - 7 kpc, consistent with the optical size. Complementing our sample with literature data, we find that the [C II] luminosity correlates with galaxies' molecular gas mass, with a mean absolute deviation of 0.2 dex and without evident systematics: the [C II]-to-H2 conversion factor (alpha_[C II] ~ 30 Msun/Lsun) is largely independent of galaxies' depletion time, metallicity, and redshift. [C II] seems therefore a convenient tracer to estimate galaxies' molecular gas content regardless of their starburst or main-sequence nature, and extending to metal-poor galaxies at low and high redshifts. The dearth of [C II] emission reported for z > 6 - 7 galaxies might suggest either a high star formation efficiency or a small fraction of UV light from star formation reprocessed by dust
    corecore