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ABSTRACT
We present a follow-up analysis examining the dynamics and structures of 41 massive, large star-forming

galaxies at z ∼ 0.67−2.45 using both ionized and molecular gas kinematics. We fit the galaxy dynamics with
models consisting of a bulge, a thick, turbulent disk, and a NFW dark matter halo, using code that fully forward
models the kinematics, including all observational and instrumental effects. We explore the parameter space
using Markov Chain Monte Carlo (MCMC) sampling, including priors based on stellar and gas masses and disk
sizes. We fit the full sample using extracted 1D kinematic profiles. For a subset of 14 well-resolved galaxies,
we also fit the 2D kinematics. The MCMC approach robustly confirms the results from least-squares fitting
presented in Paper I (Genzel et al. 2020): the sample galaxies tend to be baryon-rich on galactic scales (within
one effective radius). The 1D and 2D MCMC results are also in good agreement for the subset, demonstrating
that much of the galaxy dynamical information is captured along the major axis. The 2D kinematics are more
affected by the presence of non-circular motions, which we illustrate by constructing a toy model with constant
inflow for one galaxy that exhibits residual signatures consistent with radial motions. This analysis, together with
results from Paper I and other studies, strengthens the finding that massive, star-forming galaxies at z ∼ 1−2 are
baryon-dominated on galactic scales, with lower dark matter fractions towards higher baryonic surface densities.
Finally, we present details of the kinematic fitting code used in this analysis.

Keywords: galaxies: kinematics and dynamics — galaxies: structure — galaxies: high-redshift

1. INTRODUCTION
Galaxy kinematics are a key probe of galaxy structure and

mass distribution, as they provide a direct trace of the mass
distribution that is not directly affected by dust attenuation
or uncertainties in estimates of stellar or gas masses (van der
Kruit &Allen 1978, van der Kruit & Freeman 2011, Courteau
et al. 2014). Kinematic measurements can therefore be used
to probe the amount of dark matter on galactic scales. Nu-
merous studies over several decades have used kinematics

∗ Email: sedona@mpe.mpg.de

to constrain the detailed mass distributions of nearby galax-
ies and their dark matter halos (including Rubin & Ford, W.
Kent 1970, Freeman 1970, Casertano 1983, Carignan&Free-
man 1985, van Albada et al. 1985, and many others). In the
local Universe, galaxy dynamics can be probed with stellar
spectroscopy and a wide range of gas tracers, including ion-
ized, neutral, and molecular gas (H�, HI, and CO). For star-
forming galaxies (SFGs), the gas tracers can often be used
past the galaxies’ optical extent (e.g. Courteau et al. 2014, and
references therein). Put together, kinematic measurements
using all available tracers provide detailed constraints on lo-
cal galaxies’ mass distributions and dynamics, which tell us
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2 PRICE ET AL.

not only about the galaxies’ present state, but also about how
they formed.
Observations of galaxy kinematics at multiple epochs over

cosmic time provide a powerful probe of the evolution of
galactic structure, and of the relative amount and distribu-
tion of baryons versus dark matter. With the advent of sen-
sitive near-infrared (near-IR) integral field unit (IFU) and slit
spectrographs on 8-10m telescopes, ionized gas kinematics
from strong rest-frame optical emission lines, in particular
H�, have become routinely accessible at z ∼ 1−3. Dynam-
ical masses (Mdyn) have been obtained for large samples of
star-forming galaxies (SFGs) based on velocity and disper-
sion profiles in the central brighter regions, typically within
the effective radiusRe, near the peak of the rotation curve for
an exponential disk (Rpeak ∼ 1.3Re). Several studies compar-
ing Mdyn estimates with stellar masses derived from multi-
band photometry and gas masses obtained from observations
of cold molecular gas/dust or inferred from scaling relations,
have indicated that in these inner regions, z ∼ 2 SFGs have
comparable or higher baryonic mass fractions than local disks
of similar masses (e.g., Förster Schreiber et al. 2006, 2009,
Erb et al. 2006, Price et al. 2016, 2020, Wuyts et al. 2016).
Ideally, measurements should probe kinematics further out,

well beyond ∼ 1−1.5Re for two main reasons. Firstly, one
can then use the shape of the rotation curve (RC) to con-
strain the mass distribution, alleviating the large uncertain-
ties associated with light-to-mass conversions in computing
stellar (M∗) and gas masses (Mgas). Secondly, the decom-
position into baryonic and dark matter mass components is
more robust when the range of radii probe from inner regions
where baryons dominate into regions where the relative con-
tribution of dark matter becomes more important. This re-
quires very sensitive observations as the line emission from
the galaxies gets very faint (e.g., exponential decrease of sur-
face brightness with increasing radius for a disk with Sérsic
index nS = 1). Recent work capitalized on subsets with very
deep data of individual galaxies, typically larger and/or with
shallower light profile (nS ≲ 1) than average, i.e. with mea-
surable emission extending further into the (inner) dark mat-
ter halo (e.g., Genzel et al. 2017, 2020, Drew et al. 2018,
Übler et al. 2018, Molina et al. 2019). Other studies em-
ployed stacking techniques to derive the average RC of larger
numbers of galaxies (Lang et al. 2017, Tiley et al. 2019). In
yet another approach, van Dokkum et al. (2015) constructed
a composite RC, inferring rotation velocities from integrated
line widths of a dozen compact and high-mass SFGs. Model-
ing of these individual or stacked RCs showed most robustly
that z ∼ 1−3 SFGs tend to be strongly baryon-dominated on
galactic scales (Genzel et al. 2017, Lang et al. 2017, Übler
et al. 2018), although these findings were challenged by Ti-
ley et al. (2019), who favored a different RC normalization
scheme than Lang et al. (2017) in their stacking approach.
Mixed results in the literature likely reflect a combination
of differences in methodologies and modeling, together with
genuine trends among the galaxy population (e.g., see discus-
sion by Förster Schreiber & Wuyts 2020).

Modeling high-quality, individual extended H� or CO RCs
of 41 z ∼ 0.67−2.45 SFGs, Genzel et al. (2020) recently con-
firmed the baryon dominance in a majority of these galaxies
and also revealed important underlying trends, with fDM(Re)
anticorrelating most strongly with central mass surface den-
sity, bulge mass Mbulge, and angular momentum parame-
ter. These results echo trends highlighted from inner disk
kinematics by Wuyts et al. (2016) and seen in recent high-
resolution numerical simulations of galaxy evolution (Lovell
et al. 2018, Teklu et al. 2018, Übler et al. 2021). As shown
by Genzel et al. (2020), low dark matter fractions on ∼ 1Re
scales can be explained by shallower inner dark matter mass
distributions than “NFW” profiles (Navarro et al. 1996), pos-
sibly due to heating by dynamical friction of satellites and
AGN feedback. The results are also consistent with effi-
cient radial transport in gas-rich environments at high red-
shift, leading to the rapid buildup of massive bulges and cen-
tral black holes.
In this paper, we follow-up on Genzel et al. (2020) (from

here on, Paper I) by assessing the impact of fitting approach
and of kinematic modeling in 1D versus 2D. We model the
same RCs of all 41 galaxies via a Markov Chain Monte Carlo
(MCMC) technique to compare to the least-squares mini-
mization adopted in Paper I. For a subset of 14 SFGs with
deep adaptive optics-assisted IFU data, we further compare
the results from modeling the 1D major-axis kinematic pro-
files to modeling the full 2D kinematic maps. Our analysis
demonstrates the robustness of the findings of high baryonic
fractions on galactic scales, and shows that the information
about the overall mass distribution is well captured in the 1D
major-axis profiles for these disk galaxies. We further high-
light the potential of second-order deviations from axisym-
metric rotation in probing the processes, such as radial in-
flows, that may efficiently concentrate baryons within the in-
ner galactic regions at early z ∼ 1−3 epochs. We also present
the details of the updated version of the galaxy kinematics
modeling code DysmalPy.
Throughout, we assume a ΛCDM cosmology with Ωm =

0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1, and a Chabrier
(2003) initial mass function.

2. SAMPLE AND DATA
The RC41 sample consists of 41 individual star-forming

and kinematically-classified disk galaxies at redshifts z =
0.65−2.45. As shown in Figure 1 of Paper I, these galax-
ies range in stellar mass and size from log10(M∗∕M⊙) ∼
9.8−11.4 and Re ∼ 2.5−10 kpc (the projected major-axis
half-light radius from stellar rest-frame 5000Å light). The
galaxies lie near the SFR versus M∗ “main sequence” of
SFGs (MS; e.g., Speagle et al. 2014, Whitaker et al. 2014),
and tend to be larger than average at their stellar mass and
redshift (based on the mass-size relationship of van der Wel
et al. 2014). The size bias results mainly from the selection of
galaxies with sufficiently well-resolved data and the most ex-
tended kinematic profiles to enable analysis of the outer disk
RCs (i.e. beyond ∼ 1−1.5Re).
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Table 1. General Galaxy Parametersa

ID z log10(M∗∕M⊙)SED SFR log10(Mgas∕M⊙)b B∕T R0e,disk
c nS,disk q0,disk i chalo

[dex] [M⊙ yr−1] [dex] — [kpc] — — [deg] —

EGS3_10098 0.658 11.11 52.0 10.50 0.60 3.0 1.0 0.14 31.0 7.3
U3_21388 0.669 10.76 4.8 10.01 0.05 7.0 1.0 0.14 82.0 7.2
EGS4_21351 0.732 10.94 79.5 10.60 0.46 3.3 1.0 0.15 47.0 6.8
EGS4_11261 0.748 11.25 85.0 10.76 0.50 4.0 1.0 0.10 59.7 6.6
GS4_13143 0.760 9.82 12.0 9.82 0.70 5.6 1.3 0.15 74.0 6.5
U3_05138 0.809 10.20 6.0 9.88 0.50 7.5 1.0 0.12 55.0 6.5
GS4_03228 0.824 9.49 10.1 9.69 0.80 7.0 1.0 0.15 78.0 6.5
GS4_32976 0.831 10.37 22.0 10.19 0.90 6.8 1.0 0.17 68.0 6.5
COS4_01351 0.854 10.73 57.0 10.58 0.24 8.0 0.9 0.15 68.0 6.5
COS3_22796 0.914 10.32 11.1 10.10 0.15 9.0 1.0 0.17 58.0 6.1

U3_15226 0.922 11.11 31.0 10.54 0.55 5.5 1.0 0.17 50.0 6.1
GS4_05881 0.990 9.78 19.0 9.92 0.85 5.6 1.3 0.17 60.0 6.0
COS3_16954 1.031 10.74 100.0 10.72 0.50 8.1 1.0 0.17 49.5 6.1
COS3_04796 1.032 10.80 51.0 10.63 0.18 9.7 1.1 0.10 50.0 6.1
EGS_13035123 1.120 11.18 126.0 10.95 0.20 10.2 1.0 0.17 24.0 6.0
EGS_13004291 1.197 10.97 630.0 11.54 0.61 3.0 1.3 0.17 27.0 6.0
EGS_13003805 1.232 11.23 200.0 11.32 0.29 5.6 1.2 0.17 37.0 5.9
EGS4_38153 1.362 10.44 78.0 10.55 0.16 5.9 1.0 0.20 75.0 5.0
EGS4_24985 1.400 10.90 99.0 10.70 0.40 4.6 1.0 0.20 40.0 5.0
zC_403741 1.446 10.65 60.0 10.45 0.68 2.6 1.0 0.20 28.0 5.0

D3a_6397 1.500 11.08 214.0 11.00 0.57 6.3 1.0 0.24 30.0 5.0
EGS_13011166 1.530 11.08 375.0 11.41 0.55 6.3 1.0 0.20 60.0 5.0
GS4_43501 1.614 10.61 53.0 10.51 0.40 4.9 0.6 0.20 62.0 5.0
GS4_14152 1.615 11.30 167.0 11.07 0.23 6.8 1.0 0.20 55.0 5.0
K20_ID9 2.036 10.65 81.0 10.66 0.30 7.1 1.0 0.25 48.0 4.0
zC_405501 2.154 9.92 60.0 10.27 0.07 5.0 0.2 0.25 75.0 4.0
SSA22_MD41 2.172 9.86 130.0 10.46 0.05 7.1 0.4 0.25 72.0 4.0
BX389 2.180 10.60 100.0 10.68 0.30 7.4 0.2 0.25 76.0 4.0
zC_407302 2.182 10.39 340.0 10.60 0.50 4.0 1.0 0.12 60.0 4.0
GS3_24273 2.187 11.00 267.0 11.03 0.80 7.0 1.0 0.25 60.0 4.0

zC_406690 2.196 10.62 300.0 10.91 0.90 4.5 0.2 0.25 25.0 4.0
BX610 2.210 11.00 60.0 11.36 0.42 4.9 1.0 0.25 39.0 4.0
K20_ID7 2.225 10.28 101.0 10.59 0.03 8.2 0.2 0.25 64.0 4.0
K20_ID6 2.236 10.43 99.0 10.57 0.30 5.0 0.5 0.25 31.0 4.0
zC_400569 2.242 11.08 240.0 11.30 0.70 4.0 1.0 0.22 45.0 4.0
BX482 2.258 10.26 80.0 10.91 0.02 5.8 0.2 0.25 60.0 4.0
COS4_02672 2.308 10.57 72.0 10.61 0.10 7.4 0.5 0.25 62.0 4.0
D3a_15504 2.383 11.04 146.0 10.92 0.30 6.1 1.0 0.25 40.0 4.0
D3a_6004 2.387 11.50 355.0 11.27 0.44 5.3 0.4 0.25 20.0 4.0
GS4_37124 2.431 10.59 194.0 10.70 0.70 3.2 1.0 0.25 67.0 4.0
GS4_42930 2.451 10.33 70.0 10.37 0.50 2.8 1.2 0.25 59.0 4.0

a Parameters include redshift (z), stellar mass (M∗), SFR, gas mass (Mgas), bulge-to-total ratio (B∕T ), the effective radius
(Re,disk ), Sérsic index (nS,disk ), and intrinsic axis ratio (q0,disk ) of the disk, inclination (i), and halo concentration (chalo).

b From direct measurements, or gas-mass scaling relations.
c Best-fit Re,disk from Paper I.

The kinematic data are drawn from observations of ion-
ized gas (traced with H�) and cold molecular gas (traced
with CO). The data come from near infrared observations
with SINFONI (IFU, in both seeing-limited and adaptive
optics-assisted modes) and KMOS (IFU, seeing-limited) at
ESO/VLT, and with LBT-LUCI (slit, seeing-limited), to-
gether with millimeter interferometry from IRAM/NOEMA.
The observations for each galaxy probe out to ∼1.5−4 times
the effective radius, which is crucial for detailed kinematic
modeling. Themedian on-source integration time is 16 hours,

with individual data sets ranging from 4 to 56 hours. Table 1
lists the basic properties of the sample, including z,M∗, SFR,
gas mass, and structural parameters, as well as the halo con-
centration parameter (adopted as a function of z only, based
on the average of relations by Bullock et al. 2001, Dutton &
Macciò 2014, Ludlow et al. 2014; see Tables 1, D1, D2 and
Sec. 2 and Appendix A of Paper I for full details).
Most of the information about the underlying mass distri-

bution of disks is expected to be encoded in the velocity and
velocity dispersion profiles along the projected kinematic ma-
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jor axis (c.f., Genzel et al. 2006, 2017; see also Section 5).
For the comparison of fitting methodology, we use the same
1D profiles as in Paper I, where details of their extraction can
be found. In summary, except for the LBT/LUCI slit spec-
troscopic H� data of two objects, the profiles were obtained
from the H� or CO data cubes using a pseudo-slit along the
kinematic major axis. The pseudo-slit width is either constant
and ∼ 1−1.5 times the point-spread function full-width at
half-maximum (PSF FWHM), or increasing towards the out-
skirts for more face-on galaxies (with opening angle ∼5−10
degrees). This choice of slit width and geometry best sam-
ples the major-axis kinematics given the projected isovelocity
contours of inclined disks, maximizing the S/N and radial ex-
tent while minimizing contamination of signal away from the
major axis. For galaxies with IFU observations in more than
one mode (seeing-limited or AO-assisted) or more than one
instrument (SINFONI + KMOS), the data are combined into
a composite cube before performing the 1D extraction. For
EGS4-24985 and EGS-13011166, observed with LBT/LUCI
and with NOEMA, the independently extracted 1D profiles
are combined together (see alsoGenzel et al. 2013, Übler et al.
2018).
For the subset of galaxies with AO observations, we also

extract 2D velocity and dispersionmaps. Asmost of these ob-
jects also have seeing-limited observations, we extract maps
from the cubes combining the AO and non-AO H� data in or-
der tomaximize the S/N and radial coverage. For the compos-
ite cubes, uncertainties are estimated using RMS flux varia-
tions in the spectral ranges free from emission lines. We then
use LINEFIT to measure the 2D kinematic maps from the
composite cubes (Förster Schreiber et al. 2009, 2018, Davies
et al. 2011). The velocity and dispersion maps (corrected
for instrumental spectral resolution) are obtained by fitting a
Gaussian to the H� line in the spectrum of each spaxel, after
spectral and spatial median-filtering of the input data cube by
3 pixels in each dimension (similar to the resolution element,
to mitigate noise peaks). Uncertainties are derived through
a Monte Carlo approach, by perturbing the input spectrum
100 times according to the noise cube associated with each
data cube and assuming a Gaussian noise distribution. Masks
for the 2D maps are created using a combination of criteria.
These include an integrated line flux S/N cut (generally≳5�),
together with (where necessary) an integrated line flux frac-
tion cut (≳ 0.05−0.1fmax). We also use fit uncertainty cuts
for both the velocity and dispersion maps (typically ≳3−5�)
as well as sigma clipping of the kinematics as needed (mostly
≳ 3−5�). Segmentation maps are also incorporated to de-
tangle the flux from e.g. neighboring bright clumps. We ad-
ditionally flag a small number of outlier pixels not otherwise
excluded, or explicitly include a few non-problematic lower
flux pixels falling within otherwise unmasked regions. In or-
der to have the highest possible spatial resolution, when ex-
amining features in residual maps we additionally consider
only the AO data (see Section 5.2).

3. DYNAMICAL MODELING
To model the kinematics of the galaxies, we employ the

fully 3D code DYSMAL, which has been continually opti-
mized for applications to high redshift studies (Genzel et al.
2006, 2011, 2014, 2017, 2020, Cresci et al. 2009, Davies et al.
2011, Wuyts et al. 2016, Lang et al. 2017, Übler et al. 2018).
The code is parametric, and follows a forward modeling ap-
proach, incorporating one or more mass and kinematic com-
ponents and accounting for all observational effects (such as
projection, beam smearing, etc.). The fits to 1D and 2D mea-
surements use profiles and maps from the 3D model cube ex-
tracted in a similar way as for the observations. The latest
DYSMAL upgrade in functionality and model ingredients is
presented in Appendix A. In this section, we give the specific
model choices used for the present analysis.

3.1. Galaxy Model Components
As in Paper I, we model each galaxy as a thick, turbulent

disk and a bulge embedded in a dark matter halo, adopting
the same treatment and assumptions. The disk and bulge
components are modeled as deprojected Sérsic profiles, fol-
lowing Noordermeer (2008). We assume the bulge is spher-
ical, with index nS,bulge = 4 and projected effective radius
Re,bulge = 1 kpc. The disk is taken to be an oblate, flat-
tened spheroid with intrinsic axis ratio q0,disk , index nS,disk ,
and radius Re,disk . The masses of the disk and bulge com-
ponents are calculated based on the total baryonic mass,
log10(Mbar∕M⊙), and the bulge-to-total ratio, B∕T . The cir-
cular velocity curve for the disk and bulge are then calculated
using Eq. 10 of Noordermeer (2008). Following the approach
in Paper I for consistency, we assume that only the disk com-
ponent contributes to the light of our tracer (H� or CO), and
that the disk light distribution follows a Sérsic profile.
Our model also includes a dark matter halo with a NFW

profile (Navarro et al. 1996), to provide the most direct com-
parison to the least-squares analysis in Paper I. The halo has
a mass Mvir and fixed concentration chalo, which is adopted
based on the typical redshift evolution of dark matter halo
concentrations (e.g., Bullock et al. 2001, Dutton & Macciò
2014, Moster et al. 2020). For this analysis, we do not in-
clude any halo adiabatic contraction.
We assume the intrinsic velocity dispersion of our galax-

ies is constant and isotropic throughout the disk, with value
�0. The corresponding pressure support — important for
the dynamics of thick disks — is accounted for by applying
an asymmetric drift correction to the model circular velocity
vcirc in computing the actual rotation velocity vrot following
the relation presented by Burkert et al. (2010) for exponential
disks (their Eq. 11; see also Eq. A4).

3.2. Fitting 1D Kinematic Profiles
The best-fit modeling parameters in Paper I were derived

from least-squares optimization, using boundaries on the free
parameters that are based on stellar, gas, and morphological
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Table 2. Priors for 1D MCMC Fitting

Parameter Prior Bounds

log10(Mbar∕M⊙) Gaus
(

log10(M∗,SED +Mgas), 0.2 dex
)

a [9, 13] dex

fDM(Re) Flat [0, 1]
�0 Flat [5, 300] km s−1

Re,disk Gaus
(

R0E,disk , 2 kpc
)

b [1, 15] kpc

a log10(M∗∕M⊙)SED and log10(Mgas∕M⊙) are listed in Table 1.
b The adopted values of R0E,disk are given in Table 1.

properties. Here we instead use aMCMCparameter space ex-
ploration to determine the best-fit parameter values, follow-
ing the general procedure described in Appendix A.2. The
key difference is that the best-fit values for Paper I are de-
termined using �2 minimization (i.e., maximizing the model
likelihood given the data),1 while for this analysis we use the
MCMC-derived posterior distributions to determine best-fit
values (i.e., combining the prior and likelihood information).
In this analysis, we simultaneously fit the 1D velocity

and dispersion profiles for 4 free parameters: the log total
baryonic mass, log10(Mbar∕M⊙); the disk effective radius,
Re,disk ; the intrinsic velocity dispersion, �0; and the enclosed
dark matter fraction fDM(Re) = v2circ,DM(Re)∕v

2
circ,tot(Re)

(where here Re = Re,disk2). We assume Gaussian
priors for log10(Mbar∕M⊙) with a standard deviation of
0.2 dex that are centered on the baryonic mass derived using
log10(M∗∕M⊙) from SED fitting and either a direct measure-
ment of log10(Mgas∕M⊙) (from Tacconi et al. 2013, 2018,
and Freundlich et al. 2019) or an estimate using the scaling
relations from Tacconi et al. (2020). We also bound the val-
ues within log10(Mbar∕M⊙) ∈ [9, 13] dex. For Re,disk , we
adopt Gaussian priors of standard deviation 2 kpc that are
centered on the fit value of Re,disk from Paper I,3 and also
bound Re,disk ∈ [1, 15] kpc. Finally, we adopt flat bounded
priors for the intrinsic dispersion (�0 ∈ [5, 300] km s−1) and
dark matter fraction (fDM(Re) ∈ [0, 1]). For reference, the
priors adopted for the 1D fitting are summarized in Table 2.
The remaining model parameters are fixed, as it is difficult

to simultaneously fit for more parameters given the spatial
resolution and S/N of the data. We adopt the values of nS,disk ,
halo concentration chalo, and the disk flattening q0,disk used in
Paper I (see Tables D1 & D2). We also use the final values
of inclination i and B∕T from Paper I (determined from a
combination of kinematic and imaging information), because
estimates of inclination or B∕T based only on imaging may

1 The Paper I fDM(Re) uncertainties are derived from a comparable MCMC
fit (i.e., same free parameters), as MCMC sampling can efficiently and ro-
bustly capture multidimensional uncertainties (see Paper I, Appendix A.4).

2 See also the discussion in Appendix A.3 for the choice of fitting parameter
and effective priors on quantities inferred from fitted parameters, in partic-
ular the choice of fitting fDM(Re) versus log10(Mvir∕M⊙).

3 While this prior choice is not independent from our data, it does allow us to
include more information than just morphological fitting to imaging.

also suffer from the effects of attenuation ormass-to-light gra-
dients. The model position angle PA is set to the measured
kinematic major axis PA (as in Paper I; very similar to the
rest-frame optical morphological PA). As the 1D velocity and
dispersion profiles have been centered spatially and corrected
for any systemic velocity, we fix x0 = y0 = Vsys = 0.
For the 1D fits, the MCMC chain sampling is run using

1000 walkers, with 200 steps after a burn-in of 50 steps. With
these settings, the chains for all fits over all objects have a final
mean acceptance fraction between 0.2 and 0.5. We then adopt
the maximum a posteriori (MAP) values of the fit parameters
as the best-fit values, where we jointly analyze the posteriors
for the free-parameter priors (to account for degeneracies in
the posterior distributions). The lower and upper 1� uncer-
tainties are then determined from the shortest interval con-
taining 68% of the marginalized posterior for each parameter
(as discussed in Appendix A.2). The best-fit MAP values for
the 1D MCMC fitting are listed in Table 3.

3.3. Fitting 2D Kinematic Maps
For the 2Dmodeling of the sensitive, deepest-possible data

(composite or AO-only), we also simultaneously fit the ve-
locity and dispersion maps. We begin with the same model
setup as for the 1D fits, but additionally allow the systemic
velocity Vsys to vary. We fix the kinematic major axis posi-
tion angle, inclination, and spatial center for the 2D fits, as
asymmetries or non-circular motions in the 2D maps can im-
pact these parameters. For the 2D fits, theMCMC sampling is
also run with 1000 walkers, but the chains are run longer than
for the 1D fitting. We adopt fiducial settings of 300 steps after
a burn-in of 100 steps, but some objects require longer burn-
in periods. For some objects, Re,disk is poorly constrained,
so the 2D fits are repeated while fixing Re,disk to the best-fit
values from the 1D MCMC fitting (given in Table 3). The
priors used for the 2D fitting, and whether Re,disk is fixed or
free, are listed in Table 4.

4. COMPARISON OF 1D KINEMATIC DISK FITTING
USING LEAST-SQUARES AND MCMC

In Figure 1, we compare the best-fit values of the dark mat-
ter fraction fDM(Re), baryonic mass log10(Mbar∕M⊙), in-
trinsic dispersion �0, and disk effective radius Re,disk from
Paper I and this analysis. We stress that both analyses are
based on the same 1D observed rotation and dispersion pro-
files. Overall, we find fairly good agreement between the
two fitting methodologies, with the MCMC results finding
the same overall trends and results as in Paper I.
The MCMC analysis tends to find slightly higher dark

matter fractions, with a median offset of ⟨ΔfDM(Re)⟩ =
⟨fDM(Re)MCMC − fDM(Re)least−sq.⟩ = 0.12 between the
analyses. We also find correspondingly slightly lower
baryonic masses than the least-squares analysis, with
⟨Δ log10(Mbar∕M⊙)⟩ = −0.04 dex. The derived veloc-
ity dispersions also tend to be higher in the MCMC, with
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Table 3. Best-fit Parameters, 1D Fittinga

ID z log10(Mbar∕M⊙) Re �0 fDM(Re) log10(Mvir∕M⊙)b

[dex] [kpc] [km s−1] — [dex]

[Free] [Free] [Free] [Free] [Inferred]

EGS3_10098 0.658 10.93+0.11−0.13 3.93+1.95−1.18 61.79+9.99−15.07 0.22+0.13−0.22 12.55+1.21−0.72
U3_21388 0.669 10.80+0.17−0.19 8.68+1.52−1.42 51.04+7.78−6.88 0.69+0.13−0.09 12.72+0.22−0.16
EGS4_21351 0.732 10.68+0.07−0.14 5.90+1.71−1.52 30.00+7.01−6.27 0.11+0.13−0.11 10.53+1.26−0.36
EGS4_11261 0.748 11.11+0.20−0.07 5.49+2.75−1.33 41.34+8.46−11.22 0.24+0.11−0.14 12.52+0.78−0.70
GS4_13143 0.760 10.25+0.15−0.10 5.27+1.92−1.31 21.70+6.37−8.06 0.48+0.13−0.13 11.75+0.26−0.26
U3_05138 0.809 10.41+0.12−0.12 7.57+2.06−1.54 16.88+3.79−9.41 0.45+0.21−0.16 11.34+0.49−0.33
GS4_03228 0.824 9.98+0.19−0.14 6.76+1.76−2.01 13.88+3.83−8.58 0.75+0.11−0.12 11.88+0.20−0.16
GS4_32976 0.831 10.71+0.14−0.08 9.40+2.44−1.32 40.53+6.53−9.70 0.62+0.08−0.10 12.52+0.26−0.25
COS4_01351 0.854 10.97+0.18−0.09 7.08+2.63−1.04 63.67+5.09−4.96 0.53+0.11−0.09 12.87+0.23−0.26
COS3_22796 0.914 10.54+0.18−0.15 9.56+1.50−2.01 11.00+6.74−5.92 0.58+0.20−0.18 11.57+0.38−0.33

U3_15226 0.922 10.67+0.15−0.09 6.65+2.52−1.47 42.19+5.26−7.87 0.42+0.10−0.16 11.96+0.33−0.43
GS4_05881 0.990 10.13+0.13−0.12 4.71+2.31−1.79 63.48+5.11−6.60 0.76+0.12−0.07 12.92+0.18−0.32
COS3_16954 1.031 10.87+0.13−0.09 8.20+2.21−1.33 55.10+5.29−7.23 0.63+0.12−0.10 12.90+0.21−0.22
COS3_04796 1.032 11.12+0.14−0.09 9.22+2.18−1.44 18.82+2.48−10.80 0.49+0.12−0.16 12.54+0.27−0.34
EGS_13035123 1.120 11.09+0.09−0.09 10.17+1.92−1.73 19.33+2.09−1.89 0.28+0.15−0.16 11.45+0.56−0.42
EGS_13004291 1.197 11.12+0.05−0.08 4.48+2.15−0.87 59.34+8.83−5.26 0.08+0.16−0.08 11.35+1.66−0.06
EGS_13003805 1.232 11.43+0.09−0.11 6.70+1.61−1.76 40.45+9.86−10.15 0.18+0.09−0.17 12.19+1.08−0.55
EGS4_38153 1.362 10.94+0.17−0.20 4.17+1.91−1.36 58.48+8.70−17.44 0.47+0.20−0.15 13.50+0.38−0.25
EGS4_24985 1.400 11.14+0.12−0.13 5.94+1.39−1.40 43.03+7.25−27.70 0.35+0.17−0.16 12.83+0.50−0.44
zC_403741 1.446 10.60+0.04−0.10 3.28+2.27−0.67 69.48+6.27−8.08 0.05+0.18−0.05 10.29+1.86−0.07

D3a_6397 1.500 11.13+0.08−0.07 6.83+1.96−1.68 82.52+7.17−11.02 0.38+0.14−0.17 12.70+0.54−0.46
EGS_13011166 1.530 11.25+0.11−0.08 7.80+2.03−1.42 60.93+7.61−8.67 0.34+0.12−0.10 12.53+0.44−0.33
GS4_43501 1.614 10.82+0.16−0.11 5.05+2.15−1.28 46.04+5.16−8.45 0.38+0.12−0.10 12.31+0.37−0.27
GS4_14152 1.615 11.45+0.13−0.10 7.35+1.69−1.67 45.53+8.12−11.61 0.30+0.13−0.15 12.69+0.56−0.49
K20_ID9 2.036 10.92+0.16−0.11 7.00+2.19−1.31 26.64+5.03−13.07 0.46+0.17−0.17 12.23+0.36−0.38
zC_405501 2.154 10.46+0.22−0.16 6.03+1.34−1.07 65.68+4.02−5.99 0.52+0.21−0.21 11.41+0.44−0.41
SSA22_MD41 2.172 10.61+0.24−0.18 7.98+1.70−1.27 72.20+6.52−6.85 0.71+0.15−0.14 12.05+0.25−0.24
BX389 2.180 11.05+0.27−0.11 6.81+1.67−0.87 80.33+4.94−8.27 0.59+0.14−0.15 13.06+0.31−0.34
zC_407302 2.182 10.66+0.11−0.10 5.39+1.82−1.54 63.62+5.29−6.26 0.61+0.10−0.09 12.81+0.24−0.24
GS3_24273 2.187 10.91+0.08−0.08 8.80+1.90−1.23 21.78+7.65−9.48 0.25+0.15−0.10 11.18+0.55−0.30

zC_406690 2.196 11.06+0.04−0.06 4.84+2.26−0.92 73.39+7.14−3.11 0.06+0.12−0.06 10.81+1.46−0.18
BX610 2.210 11.06+0.11−0.10 6.02+2.02−1.28 80.39+5.68−6.41 0.45+0.16−0.13 12.80+0.45−0.37
K20_ID7 2.225 10.89+0.24−0.20 7.70+1.40−1.30 74.30+4.44−6.97 0.76+0.16−0.10 13.02+0.22−0.14
K20_ID6 2.236 10.69+0.10−0.13 4.88+2.61−0.78 64.70+7.45−5.33 0.13+0.20−0.13 10.52+1.23−0.21
zC_400569 2.242 10.98+0.09−0.04 6.18+2.15−1.51 71.82+5.97−8.40 0.29+0.12−0.18 11.92+0.75−0.73
BX482 2.258 11.05+0.23−0.15 6.58+0.98−0.79 71.63+3.33−4.03 0.61+0.17−0.16 12.93+0.30−0.27
COS4_02672 2.308 10.85+0.22−0.10 7.08+1.97−1.24 64.67+4.07−4.51 0.43+0.20−0.21 11.61+0.47−0.42
D3a_15504 2.383 11.13+0.12−0.08 6.40+1.79−1.30 69.84+3.95−4.75 0.24+0.13−0.10 11.68+0.59−0.41
D3a_6004 2.387 11.52+0.07−0.11 6.05+2.08−1.08 68.68+6.68−6.36 0.12+0.17−0.12 11.93+1.49−0.26
GS4_37124 2.431 10.78+0.15−0.11 5.17+1.86−1.23 68.48+7.92−13.84 0.43+0.11−0.15 12.33+0.42−0.54
GS4_42930 2.451 10.43+0.15−0.07 5.17+1.85−1.31 56.91+3.39−4.35 0.43+0.16−0.18 11.35+0.61−0.61

a MCMC MAP values (from the joint posterior distribution) for fits to 1D data, using NFW halos, no adiabatic contraction, and assuming asymmetric drift corrections.
b Calculated from the best-fit fDM(Re), log10(Mbar∕M⊙), and Re.

offset ⟨Δ�0⟩ = 8.64 km s−1. Finally, the disk effective
radii are overall in very good agreement, though for smaller
galaxies the best-fit radii are slightly higher in the MCMC
analysis (with an overall median offset of ⟨ΔRe,disk⟩ =
0.65 kpc). These median differences are within the typical
uncertainties for the two analyses (median uncertainties of ∼
0.1−0.14 for fDM(Re), ∼0.1−0.13 dex for log10(Mbar∕M⊙),
∼5−8 km s−1 for �0, and ∼1−2 kpc for Re,disk).

Generally, these differences in values reflect some of the
inherent degeneracies in our models (as discussed in Ap-
pendix A.4), modulated by the adopted priors and con-
straints. For the MCMC analysis, looser constraints on both
�0 and Re,disk are adopted, as well a Gaussian prior for
log10(Mbar∕M⊙). In contrast, the least-squares analysis gen-
erally had tight constraints on �0 (based on the outermost
dispersion points), and adopted top-hat bounds forMbar . In
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Figure 1. Comparison of the best-fit values of the key dynamical and structural parameters for the RC41 sample from Paper I (least squares)
and the 1D MCMC analysis (MAP) presented in this paper. From left to right, we compare fDM(Re), log10(Mbar∕M⊙), �0, and Re,disk . Galaxies
at z < 1.2 and z ≥ 1.2 are marked with blue squares and red circles, respectively. The black dashed line shows the 1:1 relation. The dark
matter fractions measured from the MCMCMAP analysis in this paper tend to be higher than those from Paper I by ΔfDM(Re) ∼ 0.1−0.15, but
the values are consistent within the uncertainties for most galaxies. Paired with the fDM(Re) offset, in this paper we tend to find slightly lower
baryonic mass values. We tend to find higher intrinsic velocity dispersion values, as the priors adopted in this analysis are less restrictive than
the bounds in Paper I. The best-fit disk effective radii are fairly similar between the two analyses, though slightly larger in this paper’s analysis.
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Figure 2. Dark matter fraction versus baryonic mass (left) and versus baryonic surface density (right) using the best-fit results of the 1D
MCMC analysis in this paper. The symbol definitions are the same as in Figure 1. The median 1� uncertainty contours are shown with filled
grey regions. The grey dashed line in the right panel shows the relation betweenΣbar and fDM(Re) fromWuyts et al. (2016). Spearman correlation
coefficients and p-values are also shown. We find very similar anti-correlations between fDM(Re) and log10(Mbar∕M⊙) (moderate, 2.7�) and
between fDM(Re) and log10(Σbar∕M⊙ kpc

−2) (strong, 5�) as reported in Paper I (their Figure 7, lower left and upper right, respectively), though
the MCMC MAP fDM(Re) values are a bit higher on average, particularly for some of the z ∼ 2 galaxies.

particular, the looser constraints on �0 impacted the MCMC
fitting. The increased parameter flexibility resulted in cases
where the likelihood is maximized by a higher �0, as the im-
proved match of the model velocity curve to the data out-
weighed the increased discrepancy with the dispersion pro-
file. In other cases, the overall observed dispersion profile
resulted in higher likelihood for models with increased �0.
This tendency of higher �0 (from the looser �0 prior) com-
bines with the effect of the adopted Gaussian priors onRe,disk
and log10(Mbar∕M⊙) to impact the best-fit results of our si-
multaneous 4-parameter MCMC fitting. The higher �0 and
marginally higherRe,disk values tend to shift up the DYSMAL
model vcirc(Re) degeneracy ellipse (already moving towards
higher fDM(Re)), and the slightly lower log10(Mbar∕M⊙)

values translate into higher fDM(Re) values (see Figure 7, Ap-
pendix A.4).
Despite these small differences in the recovered values be-

tween these two approaches, the MCMC analysis confirms
that themajority of galaxies in our sample (∼70%), partic-
ularly at z ≳ 1.2, are baryon-dominated on galaxy scales,
with fDM(Re) ≲ 0.5. For ∼30%, the dark matter fractions
are similar to or less than that of “maximal disks” (fDM,max <
0.28; Courteau & Dutton 2015). Moreover, the MCMC re-
sults recover the same overall trends seen in Paper I, such as
the strong anti-correlation of dark matter fraction with bary-
onic surface density and the moderate (and less significant)
anti-correlation of dark matter fraction with total baryonic
mass, which we show in Figure 2. Overall, we find that the
least-squares and MCMC results are in good agreement.
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Table 4. Priors for 2D MCMC Fittinga,b

ID log10(Mbar∕M⊙) fDM(Re) �0 Re,disk Vsys

[dex] — [km s−1] [kpc] [km s−1]

zC_403741 Gaus(10.86, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−100, 100]
D3a_6397 Gaus(11.34, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−130, 70]
zC_405501 Gaus(10.43, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Gaus(5.0, 2); [1, 15] Flat[−108, 92]
BX389 Gaus(10.94, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−180, 20]
zC_407302 Gaus(10.81, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−150, 50]

zC_406690 Gaus(11.09, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−75, 125]
BX610 Gaus(11.52, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Gaus(4.9, 2); [1, 15] Flat[−100, 100]
K20_ID7 Gaus(10.76, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−100, 100]
K20_ID6 Gaus(10.80, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Gaus(5.0, 2); [1, 15] Flat[−100, 100]
zC_400569 Gaus(11.50, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−100, 100]

BX482 Gaus(11.00, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Gaus(5.8, 2); [1, 15] Flat[−40, 160]
D3a_15504 Gaus(11.28, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−100, 100]
D3a_6004 Gaus(11.70, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−100, 100]
GS4_42930 Gaus(10.65, 0.2); [9, 13] Flat[0, 1] Flat[5, 300] Fixed Flat[−100, 100]

a Gaussian priors are noted as “Gaus(center, stddev)”, and are additionally bounded within the range [lower, upper]. Flat priors and their boundaries are denoted by “Flat[lower, upper]”.
b When not fixed, the priors on log10(Mbar∕M⊙), fDM(Re), �0, and Re,disk are the same for both the 1D and 2D MCMC fitting.

5. COMPARISON OF DISK FITTING USING 1D AND
2D KINEMATICS

For the RC41 data set, we performed our dynamical anal-
ysis using extracted 1D kinematic profiles, to maximize the
data S/N and to push to the largest possible radii. For axisym-
metric distributions, 2D maps of the galaxy velocity and dis-
persion fields (or additional higher-order moments) encode
additional information about the kinematic position angle and
galaxy inclination, and can provide additional constraints on
the disk effective radius, Re,disk , or the bulge-to-total ratio,
B∕T . Given sufficient 2D S/N, it would thus be possible to
independently fit for these parameters, instead of adopting
values derived from imaging under the assumption that they
also apply to the underlying mass distribution, which may be
incorrect given intrinsic mass-to-light gradients or optically
thick dusty regions in the centers of galaxies. It should be
noted, however, that 2Dmaps can reveal noncircular motions,
which capture other physical processes superimposed on the
regular disk rotation.
Here we compare 1D and 2D fitting results for a subset of

14 galaxies in the RC41 sample, in order to examine how
much dynamical information is captured along themajor axis,
and to consider the relative benefits of fitting in 1D versus
2D.We then briefly examine non-circular motions seen in the
2D residual maps for one galaxy, and present an example toy
model that could describe this additional kinematic signature.

5.1. Disk Modeling: Kinematics Well-Measured by 1D
Fitting

In order to maximize the depth of the 2D maps (and there-
fore pushing to the maximum outer radii), we perform fitting
using 2D maps derived from the deepest possible data —
generally the composite cubes combining all available AO-
assisted and seeing-limited data. The measurement of the 2D
maps and the 2D fitting methodology are presented in detail

in Sections 2 and 3.3. The key difference between the 1D and
2D fitting is in the treatment of Re,disk : it is a free parameter
for the 1Dmodeling, but for many cases is poorly constrained
by the 2D maps. Thus, for most 2D fits we fix Re,disk to the
best-fit 1D MCMC value. For the 2D fitting we additionally
fix the kinematic center and orientation (PA, inclination) for
each galaxy, as these parameters can be strongly impacted by
asymmetries or non-circular kinematic features (as discussed
below).
As an example of the 2D versus 1D fits, in Figure 3we show

the 2D maps, best-fit models, and residuals for three galax-
ies (second through fourth columns). For comparison with
the 1D fits, we also show the best-fit 2D models extracted
along the major axis using pseudo-slits versus the observed
and best-fit 1D profiles (first column). There is relatively
good agreement in the 1D profiles between the data, 1D and
2D best-fit models, though the 1D profiles from the 2D mod-
els diverge from the data towards the outskirts in some cases.
As discussed below, we attribute these deviations primarily to
the impact of non-circular kinematics or asymmetric features
on the 2D fits.
When comparing the 1D and 2D fits, we find a rela-

tively good agreement between the two measurements of
fDM(Re) overall. However, on average the 2D fits tend to
find larger dark matter fractions. Furthermore, a good frac-
tion of the galaxies show discrepancies between fDM(Re)1D
and fDM(Re)2D, up to differences of |ΔfDM(Re)| ∼ 0.45.
For the baryonic masses, there is excellent agreement above
log10(Mbar∕M⊙) ∼ 11, but we tend to find a ∼−0.2 dex off-
set between the 2D and 1D values for the lower masses (and
accordingly generally find higher 2D dark matter fractions).
There is scatter between the measured 1D and 2D intrinsic
dispersion values, as �0 is sensitive to off major-axis features
and deviations from pure rotational motion in the 2D maps.
Two factors could be responsible for these discrepancies.
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Figure 3. Example 2D fits for 3 galaxies in the RC41 sample. The composite 2D velocity (top) and dispersion (bottom) maps are shown in
the second column for each galaxy. The best-fit models and residuals from the 2D fitting are shown in the third and fourth columns. The major
axes and centers are marked with white lines on the 2D maps, and contours are marked in 50 km s−1 intervals. In the first column, we compare
the 1D observed profiles (black circles) with the 1D best-fit models (red squares) and the 2D best-fit models, extracted within the same 1D
apertures/PV diagrams (blue points, with filled squares and open diamonds showing ≤Rout,2D and >Rout,2D, The 1D residuals for the 1D and 2D
models are shown in light red and blue, respectively. Overall, the 1D and 2D fits of the disk kinematics show fairly good agreement, but there
are deviations towards larger radii that likely reflect effects from non-circular features. The axisymmetric disk models used in this study work
well for galaxies with fairly symmetric kinematics (e.g., GS4-42930). Non-circularities such as PA twists can lead to differences between the
1D and 2D fits (e.g., zC-400569), but in other cases both fits agree despite such features (e.g., D3a-15504). Previously, the 2D disk modeling of
D3a-15504 (and other subsample objects) by Cresci et al. 2009 also revealed the primary disk rotation and secondary residual features in this
galaxy.
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First, there are differences in the 1D and 2D data maximal
radial extent (i.e., Rout , as noted in Figure 3). The apertures
used to extract the 1D profiles help to optimize the data S/N,
pushing the kinematic profiles out to large radii, particularly
when flared apertures are used. In contrast, the 2D maps are
limited by the per-spaxel S/N, and thus are generally limited
to smaller galactic radii. For most of the objects in this sub-
set,Rout,1D is greater thanRout,2D by∼ 0.5−3 kpc. The extra
radial coverage of the 1D profiles can help to break degenera-
cies between model parameters, as this better probes regions
where dark matter is expected to become more important rel-
ative to the baryons. The more extended 1D profiles can also
better constrain the intrinsic velocity dispersion, as �0 is best
probed in regions less impacted by beam smearing (i.e. large
galactic radii). We test the relative importance of the data
radial extent in our fits by repeating the 1DMCMC fitting us-
ing profiles truncated to more closely matchRout,2D (e.g., see
left panels of Figure 3). These fits find nearly identical results
within the uncertainties to the untruncated 1D fits (with the
exception of �0 for zC-407302, where the extended 1D profile
was crucial to constraining the intrinsic dispersion). Thus, we
conclude that while for our subset of 14 galaxies radial extent
can play a role in constraining dynamical components, it is
not the primary driver of differences between the 1D and 2D
fit results.
Second, and more importantly, non-circular kinematics or

asymmetric features impact our kinematic fitting, particularly
in 2D given the extra off-major axis information. As we fit
the data with axisymmetric mass and kinematic models, any
asymmetry or non-circular motions can pose problems to the
recovery of the intrinsic underlying circular motion of the
galaxies. The major axis 1D profiles should be much less
sensitive to such issues, as many of these features are not
captured along major axis kinematic cuts. We find that most
of the objects in our 2D analysis exhibit kinematic asymme-
tries or non-circular features, which, depending on their na-
ture and strength, can significantly affect results of modeling
with axisymmetric-only models. For example, in Figure 3,
we show two galaxies exhibiting PA twists in the 2D maps.
For one object (zC-400569; bottom), this PA twist is likely
responsible for the difference in the 1D and 2D fits, while for
the other (D3a-15504; middle) the twist does not strongly im-
pact the 2D fit. In contrast, we would expect more similar 1D
and 2D fits for galaxies with fairly symmetric 2D kinematics
(e.g., GS4-42930; Figure 3, top). By probing only the major-
axis kinematics, the 1D fits may better reflect the underlying
disk kinematics and mass distributions than the 2D fits. The
non-circular or asymmetric features may drive the 2D fit re-
sults away from the intrinsic galaxy properties, complicating
a direct comparison between the 1D and 2D values. However,
from our current small 2D sample, it is difficult to determine
what type and strength of non-circular or asymmetric features
impact the 2D disk kinematic fitting.
Based on the general agreement between the 1D and 2D fit

fDM(Re) values in the modeling framework we consider (i.e.,
oblate disk, bulge, and halo), we conclude that the primary

kinematics of a rotating galaxy are well constrained using
1D fitting along the major axis only. Given the challenges
to the 2D kinematic modeling (i.e., data extent; purely axi-
symmetric models), the underlying disk kinematics may be
better constrained by fitting in 1D than in 2D.

5.2. Other Kinematic Signatures in 2D Maps
While 1D major axis profiles capture the key rotational

kinematics of disk galaxies, 2D (or 3D) kinematic data are
needed to probe higher-order dynamical effects caused by,
e.g., perturbations, radial inflows, or outflows. Most of the
galaxies in our 2D subsample exhibit signatures of noncircu-
lar motions, highlighted in previous work (for example, Gen-
zel et al. 2006, 2008, 2011, 2017, 2020, Förster Schreiber
et al. 2009, 2018, Cresci et al. 2009). These features in-
clude, notably, twists in the kinematic major axis, other resid-
ual features along the minor axis, perturbations likely stem-
ming from interactions with a neighbor/lower-mass satellite,
and features resulting from nuclear outflows due to AGN or
stellar feedback from bright off-center clumps. Some objects
show signs of multiple types of features.
To illustrate the secondary signatures from noncircular mo-

tions seen in the 2D kinematics, we examine the case of D3a-
15504, for which the kinematics show some of the most sug-
gestive features of radial inflow (Genzel et al. 2006). We con-
struct a toy model combining disk rotation with radial inflow
as follows. We first subtract the best-fit galaxy+halo model
(determined from the 1D MCMC fits) from the 2D AO kine-
matic maps, yielding initial velocity and dispersion residual
maps. For this galaxy, the velocity residual (Figure 4, top
left) shows a central residual bimodality, and a larger-scale bi-
modal “twist”. The dispersion residual shows a large central
excess, which primarily reflects the nuclear outflow seen in
this galaxy (Genzel et al. 2006, Förster Schreiber et al. 2014).
We then construct a second model (shown in Figure 4, third
column), superimposing a constant radial inflow component
on top of the best-fit 1D MCMC galaxy+halo model. The ra-
dial inflow velocity vr is manually adjusted (explored with a
grid search). We find that a constant radial inflow component
of vr ∼ 90 km s−1 can explain much of the original kinematic
residuals (see Figure 4, last column), removing much of the
large-scale “S” twist from NE to SW and the central veloc-
ity bimodality seen in the galaxy+halo-only velocity resid-
ual map. The remaining minor-axis velocity bimodality and
central dispersion peak are likely due to the AGN-driven out-
flow in this galaxy (as noted in Genzel et al. 2006), but we do
not attempt to model the outflow for this toy model. While
including an inflow component is not necessary to improve
the 2D disk fit properties for D3a-15504 (as the 1D and 2D
fits agreed well, see Figure 3), for other objects the inclusion
of secondary kinematic components could lead to refined 2D
disk fits that are in better agreement with the 1D major axis
fits.
This initial exploration highlights how deep 2D kinematic

maps, particularly from high-resolution adaptive optics-
assisted observations, can constrain other dynamical signa-
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Figure 4. Velocity (top) and dispersion (bottom) maps (with scales in units of km s−1) of one object, D3a-15504, from the 2D fitting subset that
exhibits non-circular motions. Here we use maps derived using only the AO data, to maximize the spatial resolution in the central regions of the
galaxy. The maps have been median smoothed with a kernel of 3×3 pixels, and we show contours every 50 km s−1. The first column shows the
residual maps for the galaxy+halo model determined with 1D MCMC fitting, with appropriate x0, y0, Vsys applied. The observed AO maps are
shown in the second column. We then show an example 2D model in the third column, where we use the same disk+bulge and halo parameters
from the 1D fit but manually add a constant radial inflow velocity of vr ∼ 90 km s−1 (determined by eye after a grid search). The residuals from
this composite rotation and radial motion model are shown in the last column. While this is not a fit to the data, this example rotation+inflow
model reduces the bimodal velocity residual at the center of the galaxy that is perpendicular to the major axis. The test composite model also
largely captures the large-scale “S” twist in the rotation velocity. The AGN-driven outflow in this galaxy likely explains the remaining minor-axis
velocity bimodality and central dispersion peak.

tures beyond just disk rotation. An extended analysis of the
non-circular kinematic signatures in this sample (and in fur-
ther observations) will be explored in greater detail in future
work.

6. DISCUSSION
6.1. Multiple Studies and Approaches Find Consensus:

Massive SFGs at z ∼ 1−2 are Baryon-Dominated
In the previous sections, we have shown that multiple fit-

ting approaches produce similar results for our sample of 41
massive, extended galaxies at z ∼ 1−2. Whether performing
least-squares fitting (as in Paper I) or MCMC sampling of 1D
rotation curves extracted along the major axis, or if using the
more detailed 2D rotation and dispersion maps, the best-fit
values of fDM(Re), log10(Mbar∕M⊙), �0, and Re,disk are all
in relatively good agreement. These results are also consis-
tent with those of Genzel et al. (2017) and Übler et al. (2018),
which together analyzed seven galaxies that are included in
the RC41 sample.
One key result from our analyses of the RC41 sample is that

there is a strong anti-correlation between fDM(Re) and the
baryonic surface density (Figure 8 of Paper I; also Figure 2).
However, we selected large galaxies to maximize the number
of spatial resolution elements, and thus our sample does not
include many small, high-density galaxies. We thus compare
the RC41 results to the findings of “inner dynamics” analy-
ses, which use kinematic signatures on less-extended scales
(i.e., ≲ Re) in combination with separate measurements of
Mbar or M∗ to estimate the baryonic and dark matter frac-

tions. Kinematic measurements on these scales can be per-
formed for larger samples extending to smaller galaxy sizes
than when fitting to outer rotation curves, as the depth and
resolution requirements are lower.
There is good agreement between observations from

such “inner dynamics” studies of individual massive star-
forming galaxies and our RC41 analysis. Wuyts et al.
(2016) find a very similar trend between fDM(Re) and
log10(Σbar∕M⊙ kpc−2) for a sample of 240 galaxies (as dis-
cussed in Paper I), and other studies find high baryon frac-
tions towards smaller sizes and higher densities, and with in-
creasing redshift (e.g., van Dokkum et al. 2015, Price et al.
2016, 2020). These results are also consistent with the sim-
ulation work of galaxies at this epoch. In particular, Lovell
et al. (2018) find a similar anti-correlation of fDM(Re) and
baryonic surface density (as shown in Paper I; M. R. Lovell
2020, private communication), and Zolotov et al. (2015) find
that galaxies are baryon-dominated during times when they
are very compact. The general trend of decreasing fDM(Re)
towards higher redshifts is further supported by the stel-
lar and baryonic Tully-Fisher zero-point evolution found by
Übler et al. (2017) and the numerical simulations presented
by Teklu et al. (2018).
The literature studies discussed above all constrain the en-

closed fDM on galaxy scales (i.e., r = Re or Re,disk) using
the observed kinematics of individual galaxies. Other stud-
ies stack the rotation profiles of many galaxies to probe out
to even larger galactic radii. Lang et al. (2017) stacked the
RCs of rotating disk galaxies at z ∼ 0.6−2.6, with the indi-
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vidual curves normalized at the peak vrot and corresponding
radius, and found an average dropping outer RC. By compar-
ing the stack to models consisting of thick exponential disks
with �0 typical of the stacked sample embedded in a NFW
halo, Lang et al. (2017) found that high baryonic fractions on
galactic scales are required to match the stacked RC, in ex-
cellent agreement with the findings of Paper I and this analy-
sis. A different approach was adopted by Tiley et al. (2019),
who instead stacked RCs normalized at 3Rd ∼ 1.8Re based
purely on the stellar light distribution. Tiley et al. (2019)
then compared their stacked RCs to models combining an in-
finitely thin exponential disk and a pseudo-isothermal dark
matter halo, and found the stacks are consistent with low av-
erage baryonic fractions within 6Rd ∼ 3.6Re (i.e., high aver-
age fDM). However, it is difficult to compare the results be-
tween these studies because of the different methodologies,
and importantly, the sample selections differ and thus dif-
ferently represent the underlying population. We stress also
the importance of the radius within which the enclosed fDM
is referenced, as it obviously will increase towards outer re-
gions. As highlighted by Übler et al. (2018), and from ex-
amination of the results for the RC41 sample, large or even
dominant enclosed fDM around ∼ 3.6Re is not in contradic-
tion with strongly sub-dominant fDM at ≲ 1Re. More im-
portantly, the enclosed fDM(r) may provide clues as to the
relative concentration of baryons and dark matter as galaxies
build up over time, as discussed in Paper I.
After accounting for analysis differences, these other stud-

ies are in remarkable agreement with the results of our RC41
work. This reinforces the growing consensus that massive
star-forming galaxies at z ∼ 1−2 tend to be baryon-rich on
galaxy scales (i.e., ∼1Re), with decreasing dark matter frac-
tions as galaxies become more compact. Furthermore, these
findings suggest that galaxies with low dark matter fractions
have cored halos, as the virial masses inferred from the mea-
sured fDM(Re) for a NFW profile fall far short of the pre-
dictions from stellar mass-halo mass relations (as shown in
Figs. 9 & 10 of Paper I). Theoretical studies, though primar-
ily targeting dwarf galaxies or galaxy clusters, show that dark
matter core formation can occur due to dynamical friction
from infalling clumps (e.g., El-Zant et al. 2001, Mo & Mao
2004, Johansson et al. 2009, Romano-Díaz et al. 2009, Go-
erdt et al. 2010, Cole et al. 2011, Nipoti & Binney 2015),
bars (e.g., Weinberg & Katz 2007), vigorous, fluctuating out-
flows (e.g., Dekel & Silk 1986, Navarro et al. 1996, Read &
Gilmore 2005, Mashchenko et al. 2008, Pontzen&Governato
2012, 2014, Martizzi et al. 2013, Freundlich et al. 2020, K.
Dolag et al., in prep.), or impulsive heating fromminor merg-
ers (Orkney et al. 2021). Similar physical processes could po-
tentially lead to cored dark matter halos in the massive, gas-
rich, star-forming galaxies at z ∼ 1−2.

6.2. On the role of high velocity dispersion at high redshifts
A complication of the measurement of dark matter frac-

tions is the degeneracy between baryonic disk and dark mat-
ter halo. In local galaxies, the relatively high halo concen-

tration contributes to the “disk-halo” conspiracy, where it is
difficult to detangle the velocity profiles of the disk and halo
on the galaxy scale, making it hard to distinguish between
their mass contributions. At higher redshifts, lower concen-
trations of halos at fixed stellar mass should help to break this
degeneracy, by moving the halo profile signatures to larger
radii (as discussed in Paper I).
For galaxies with relatively high intrinsic velocity disper-

sion (e.g., �0 ≳ 50−60 km s−1), the exponential disk asym-
metric drift correction (from Burkert et al. 2010) predicts a
marked reduction of the rotation velocity at ≳ Re,disk and a
truncation of the disk by roughly a few times the effective
radius. Under the right conditions, and together with the im-
pact of beam-smearing, this can result in very similar rotation
curves for models with both low and high dark matter frac-
tions. This added degeneracy complication highlights the im-
portance of simultaneously fitting both the rotation and veloc-
ity dispersion profiles, to obtain the best possible constraints
on the dynamical parameters.
We highlight an extreme example of the added compli-

cation of asymmetric drift to the disk-halo degeneracy in
Figure 5: zC-405501. This galaxy has a very broad like-
lihood degeneracy between fDM(Re)–log10(Mbar∕M⊙) that
is strongly impacted by the asymmetric drift correction. In
the left panel, we show a low dark matter fraction model,
with fDM(Re) = 0.01, log10(Mbar∕M⊙) = 10.74, and
�0 = 60 km s−1, while the right panel shows a moder-
ately high dark matter fraction model of fDM(Re) = 0.52,
log10(Mbar∕M⊙) = 10.46, and �0 = 65 km s−1. All other
parameters are the same between both models (i.e., B∕T =
0.07, Re,disk = 6 kpc, nS,disk = 0.2). We show the intrinsic
baryon, darkmatter, and total circular velocity curves for both
cases (with the green, purple, and blue solid curves, respec-
tively), and also mark �0 (orange dashed line) and the dark
matter fraction as a function of radius (grey solid line). The
rotation velocity profile determined by applying the asymmet-
ric drift correction to the total circular velocity is shown as
the solid black line. The disparity of dark matter fractions
is clearly seen in the halo velocity curves, but both models
have a fairly similar total circular velocity at Re,disk (dotted
grey line). Furthermore, the asymmetric drift correction pro-
duces vrot curves with similar shapes outside of the small-
est radii, including similar truncation radii. We note that the
slightly higher intrinsic dispersion of the high fDM(Re) case
(�0 = 65 km s−1 versus 60 km s−1) is responsible for match-
ing the truncation radius of the lower fDM(Re) case (as the
truncation radius would be higher if �0 were the same).
When including all observational effects in the models for

this extreme case (inclination, beam smearing, and extraction
in flared rectangular apertures; red open squares), both low
and high dark matter fraction models describe the observed
data (grey-outlined circles) fairly well. In particular, the in-
trinsic small radii differences have been washed out by beam
smearing, and both cases follow the dropping profile of the
observed velocity curve, thanks to the strong effects of the
asymmetric drift correction. If �0 is very well constrained
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Figure 5. Two example galaxy + halo models in an extreme case demonstrating the degeneracy of models with negligible (fDM(Re) = 0.01,
left) and relatively high (fDM(Re) = 0.52, right) dark matter fractions because of the strong effects of asymmetric drift at relatively high intrinsic
velocity dispersions (�0 ∼ 60−65 km s−1). The intrinsic baryonic, dark matter, and total circular velocity profiles are shown as green, purple,
and blue solid lines, respectively, and the intrinsic velocity dispersion is marked with the dashed orange line. The intrinsic rotation velocity
profile, including the effects of asymmetric drift (using Eq. A4, as in Burkert et al. 2010), is shown as the solid black line. The solid grey line
shows the dark matter fraction. Re,disk is marked with the dotted vertical line. The folded 1D observed velocity profile for zC-405501 is shown
with the grey-outline points. We also extract the models from the fully forward-modeled cubes using the same apertures (red open squares).
The respective fDM(Re) and log10(Mbar∕M⊙) of the models result in similar values of vcirc(Re), while the slight �0 variation controls the disk
truncation radius. Thus, depending on how large �0 is and how well it is constrained, it is possible for asymmetric drift to contribute to the
degeneracy between disk and halo, even at this early epoch (z ∼ 1−2) with less concentrated halos when the disk-halo conspiracy should be less
problematic.

from the dispersion profile, the added impact of asymmetric
drift can be partially mitigated, but for the case of zC-405501,
the uncertainties on �(r) (typically ∼ 10−15 km s−1) allow
room for a slightly higher �0 to better match the falloff for
the 52% dark matter fraction case. Observations with higher
spatial resolution can also help to break this added degener-
acy, as the intrinsic rotation curves (solid black lines) exhibit
shape differences at small radii.
Nonetheless, the similarity of the 1D “observed” model

profiles in these two cases highlights how it is still possible to
have strong disk-halo degeneracies, even at these redshifts, as
in the high-dispersion limit (with some uncertainty) the asym-
metric drift correction can produce strong turnovers even in
dark-matter dominated models. We note that the pressure
support corrections used here are based on simple assump-
tions (i.e., a self-gravitating disk). Further constraints will
help to determine the most applicable pressure correction for
galaxies at these redshifts.

7. SUMMARY
In this paper, we present a companion analysis of the kine-

matics for a sample of 41 large, massive, star-forming galax-
ies at z ∼ 1−2, which were first published in Genzel et al.
(2020) (Paper I). As in Paper I, we fit the 1D rotation curves
using fully forward-modeled 3D kinematic models extracted
to match the observations, but for this analysis we useMCMC
sampling to derive maximum a posterior (MAP) “best-fit”
values and to estimate the fit uncertainties. We additionally fit
the kinematics for a subset of 14 galaxies using the spatially-

resolved 2D rotation and dispersion maps. Our key findings
are as follows:

(i) Multiple approaches reinforce the finding that mas-
sive SFGs at z ∼ 1−2 are baryon-dominated on galac-
tic scales. We find good agreement between the mea-
sured kinematic and mass parameters for the 1D least-
squares analysis of Paper I and the 1D MCMC analy-
sis presented here. Additionally, there is relatively good
agreement between the fDM(Re) values measured from
the 1D and 2D MCMC fitting analysis for the subset
of galaxies considered. The agreement between these
three fitting methodologies, and with the results from
other work (e.g., van Dokkum et al. 2015, Wuyts et al.
2016, Price et al. 2016, 2020), demonstrates the robust-
ness of our findings that massive galaxies at these red-
shifts are generally baryon-dominated, with low galaxy-
scale (∼ 1Re) dark matter fractions.

(ii) Primary disk kinematics are well captured along the
major axis. The agreement of the 1D and 2D kinematic
fitting further supports that most of the kinematic infor-
mation about disk dynamics and intrinsic dispersion for
these high-redshift galaxies is encoded along the major
axis.

(iii) Evidence for noncircular motions. The data show ev-
idence for noncircular motions, in addition to the disk
kinematics for many of the galaxies in our 2D analysis
subset. These features can affect the results of modeling
in 2D. We show that a toy model with constant radial in-
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flow can explain some of the noncircular residuals for one
of these objects (D3a-15504).

Future work will expand on the analysis presented here and
in Paper I. Efforts are ongoing to construct even larger sam-
ples of high-quality individual rotation curves, that will pro-
vide further insights into population and evolutionary trends
in the dynamical structures and darkmatter fractions of galax-
ies at z ∼ 0.5−2. Additionally, future observations of molec-
ular gas with NOEMA and ALMA, and of ionized gas with
VLT/ERIS and JWST, will allow us to push these detailed dy-
namical studies to populations at z ≳ 3. Finally, we will ex-
amine the non-circular motions of z ∼ 1−2 galaxies in detail,
using existing and future high-resolution data. These high-
resolution data will allow us to consider not only the general
mass distributions in these galaxies, but to also constrain the
internal dynamical processes that play key roles in the build-
up and evolution of galaxies – in particular, the build-up of
bulges, which is expected to be rapid at this epoch, and that
may be accompanied by the “coring” of the galaxies’ dark
matter halos.
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APPENDIX

A. DysmalPy: DYNAMICAL DISK MODELING WITH
DYSMAL

DYSMAL is a code that uses a set of physical model mass
and kinematic components to describe and fit the kinematics
of galaxies. Here, we discuss DysmalPy, which implements
and extends the DYSMALfittingmodels that were introduced
in Cresci et al. (2009) and Davies et al. (2011), and includes
subsequent improvements described in Wuyts et al. (2016),
Genzel et al. (2017), and Übler et al. (2018). Specifically,

4 http://www.astropy.org

this new implementation in python now includes multiple
halo models, outflow components, the ability to tie model
component parameters together, and the choice of fitting us-
ing either least-squaresminimization orMarkov ChainMonte
Carlo (MCMC) posterior sampling.
In this Appendix, we describe how a DYSMAL

model is used to forward-model a full 3D mock cube
Imod(xsky, ysky, Vlos) that captures the composite kinematics,
and accounts for all observational effects (including beam
smearing and instrumental line broadening). This model
cube can be either retained for 3D cube comparisons, or can
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Figure 6. Schematic of how DysmalPy models are generated. The process involves a full forward modeling of the components in the sky
frame (x, y, z), construction of a composite 4D hyper-cube including line-of-sight projection and flux weighting, a collapse along the line-of-
sight to determine Iintr.(x, y, V ), and convolution with the instrument beam and response (i.e., PSF and LSF) to yield a 3D cube. This 3D model
cube can then be directly compared to data cubes, or can be further processed for comparison to 1D kinematic profiles or 2D kinematic maps.

be directly compared to 2D or 1D kinematic observations by
extracting 2D maps or 1D profiles following the same proce-
dure that was applied to the observed data. We then describe
the procedures for fitting the DYSMAL model to observed
data, either using MCMC or least-squares fitting.
As the DYSMAL model creation fully forward-models the

galaxy kinematics, it is possible to directly fit for the intrin-
sic galaxy properties. Furthermore, because DYSMAL relies
directly on mass distribution and kinematic profile parame-
terizations, these models allow for direct exploration of mass
decomposition and dark matter fractions in galaxies, as well
as any degeneracies or uncertainties in these physical quan-
tities, as opposed to non-parametric kinematic fitting that re-
quires further steps to interpret the recovered intrinsic galaxy
kinematics.5

A.1. Definition of DYSMAL Kinematic Models
At their core, DYSMALmodels are a composite set of mass

and kinematic components, together with other galaxy prop-
erties, which together describe the mass profile, light pro-
file, other kinematic components, and geometry of a galaxy.
These components, along with galaxy and instrument param-
eterizations, are used to compute a full composite mock 3D
cube Imod(xsky, ysky, Vlos) that is comparable to real observed
integral field spectrograph cubes. The procedure for pro-
ducing a mock 3D cube from the galaxy components and

5 Other approaches to kinematic fitting that use forward modeling to directly
account for observational effects include GalPaK3D (another parametric ap-
proach; Bouché et al. 2015) and 3DBAROLO (non-parametric, tilted ring
modeling; Di Teodoro & Fraternali 2015).

parameterizations is as follows. We also outline the major
steps in the process in Figure 6, and in Table 5 present an
overview of the possible model components that can be used
with DysmalPy.
We begin by defining an intrinsic coordinate system

(xgal, ygal, zgal) for the galactic system. We define xgal,
ygal as the position within the galaxy midplane (so Rgal =
√

x2gal + y
2
gal is the radial distance from the rotational axis),

and zgal to be the vertical position (which is parallel to the ro-
tational axis). The ygal axis is taken to be the axis about which
the galaxy is inclined on the sky (so the projected major axis
coincides with the ygal axis).
The galactic system is then inclined at an angle i relative

to the line of sight (with i = 0◦, 90◦ corresponding to face-
on and edge-on orientations, respectively), and the major axis
(blue side; ŷgal) is oriented at an angle PA counter-clockwise
from the upward direction in the observations (e.g., often an-
gle East of North). The transformation from the sky coordi-
nates back to the intrinsic galaxy coordinates is then

xgal =
[

(xsky − x0) cos PA − (ysky − y0) sin PA
]

cos i

− zsky sin i
ygal = (xsky − x0) sin PA + (ysky − y0) cos PA

zgal =
[

(xsky − x0) cos PA − (ysky − y0) sin PA
]

sin i

+ zsky cos i, (A1)

where (x0, y0) is the center of the galaxy within the observa-
tion field of view.
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Table 5. Possible Model Components in DysmalPy

Components Key Parameters
Black hole MBH
Freeman disk Σ0, rd
Sérsic (flattened or spherical) nS , q0, Re

e.g.: Disk + bulge nS,disk , q0,disk , Re,disk ;
nS,bulge, q0,bulge, Re,bulge

Dark matter halo
NFW log10(Mvir∕M⊙) or fDM(Re), chalo
Two-power halo �inner , �, log10(Mvir∕M⊙), chalo
Burkert rB, log10(Mvir∕M⊙)
Einasto �Ein, log10(Mvir∕M⊙), chalo
Dekel-Zhao log10(Mvir∕M⊙), s1, c2

Intrinsic velocity dispersion
Isotropic �0

Biconical Outflow �inner , �outer , iout , rend, n, �, A, vmax
Radial motion / flow

Constant radial flow vr

Next, for each mass component in the model, the mass dis-
tribution is used to determine the circular velocity within the
midplane, vcirc,comp(Rgal, zgal = 0). If the component is flat-
tened, the modified circular velocity curve is included here.
The composite circular velocity curve is then found by sum-
ming in quadrature:

v2circ,tot(Rgal) =
∑

comp i
v2circ,i(Rgal). (A2)

Alternatively, if adiabatic contraction of the halo component
is to be included, the total circular velocity is instead calcu-
lated using the implicit equation from Burkert et al. (2010)
(Eqs. 18 & 19):

v2circ,tot(Rgal) = v
2
bary,tot(Rgal) + v

2
halo(R

′),

R′ = Rgal
⎡

⎢

⎢

⎣

1 +
Rgal × v2bary,tot(Rgal)

R′ × v2halo(R
′)

⎤

⎥

⎥

⎦

, (A3)

with v2bary,tot(Rgal) =
∑

baryonic
comp i

[

v2circ,i(Rgal)
]

.

For simplicity, we assume this total vcirc,tot(Rgal) is inde-
pendent of zgal, or vcirc,tot(Rgal, zgal) = vcirc,tot(Rgal, 0) (i.e.
cylindrical shells of constant circular velocity).
Mass components that are implemented in DYSMAL in-

clude Sérsic components with or without flattening (follow-
ing Noordermeer 2008), which can be used to describe disk
(e.g., flattened and nS ∼ 1) and bulge (e.g., spherical or
flattened and nS ∼ 4) baryonic components. Tables with
pre-computed rotation curves following Noordermeer (2008)
have been calculated for nS = 0.5,… , 8 in steps of 0.1,
with inverse 1∕q0 = [1, 2, 3, 4, 5, 6, 8, 10, 20, 100]. The pre-
computed rotation curves with the nearest nS and q0 are then
used when including a deprojected (flattened or spherical)
Sérsic mass component (i.e., when nS,disk < 0.5, nS = 0.5
rotation curves are used, but nS,disk is used for the light distri-
bution; see below). Also included are halos following NFW

(Navarro et al. 1996), Two-Power (Binney&Tremaine 2008),
Burkert (Burkert 1995), Einasto (Einasto 1965), and Dekel-
Zhao (Dekel et al. 2017, Freundlich et al. 2020) profiles.
The intrinsic dispersion profile of the model,

�(xgal, ygal, zgal), can be parameterized in different ways. The
simplest option is a constant, isotropic intrinsic dispersion,
�(xgal, ygal, zgal) = �0, but other possible options include
parameterizations �(Rgal) based on the surface density of the
galactic disk.
For thick disks, as commonly seen in high-redshift galax-

ies, part of the total dynamical support is from pressure sup-
port, and not just from rotation. Thus, the rotation velocity
of such a galaxy is lower than the circular velocity, as a result
of asymmetric drift. We describe the rotation velocity of our
system, with asymmetric drift included, following the formu-
lation of Burkert et al. (2010), derived for a self-gravitating
exponential disk and constant dispersion �0:

v2rot(Rgal) = v
2
circ,tot(Rgal) − 2 �

2
0

(

Rgal
rd

)

(A4)

where rd is the disk scale radius, and rd = Re∕1.68 for an
exponential disk. If we follow the derivation by Burkert et al.
(2010), but assume the self-gravitating disk follows a more
general Sérsic distribution, the asymmetric drift correction is
then

v2rot(Rgal) = v
2
circ,tot(Rgal) − 2 �

2
0

(

bnS
nS

)(

Rgal
Re

)1∕nS

,

(A5)

where 2 (bnS∕nS ) = 3.36 for an exponential disk (nS = 1).
Even more generally, assuming the dispersion is constant
with radius Rgal (but not necessarily with height z above the
midplane), then the asymmetric drift correction is given by
Eq. 3 of Burkert et al. (2010) (with a correction term of
�20 (d ln �∕d ln r), where r = Rgal).
A radial motion component can be imprinted on top

of the galaxy rotational motion, v⃗radial motion(xgal, ygal, zgal).
One option is to assume a constant radial flow, defined as
v⃗radial motion(xgal, ygal, zgal) = −vr r̂gal (where r2gal = R2gal +
z2gal is the 3D radius of the galaxy, and positive vr corresponds
to inflows), but profiles that vary with radius or azimuthal an-
gle could also be implemented in the future. In the simplest
case, we assume this is a perturbation on the other motions,
so this motion component follows the light distribution and
geometry of the galaxy.
In addition, a detailed biconical outflow model similar to

the one described in Bae & Woo (2016) is implemented. For
this model component, the light and kinematics follow two
axisymmetric cones that share an apex at the location where
the outflow is launched, (xout,0, yout,0). The shape of the cones
are primarily defined by two opening angles, �inner and �outer ,
which delineate the walls of the cones. Each opening angle is
measured from the outflow axis such that 0◦ is along the out-
flow axis. Only regions between �inner and �outer then produce
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line emission and affect the line-of-sight (LOS) kinematics.
Finally, the cones have a maximum radial extent out to rend.
Relative to the plane of the sky, the cones have an inclina-

tion, iout , and position angle PAout that can be different from
the galaxy. iout is defined such that 0◦ indicates an outflow
axis along the LOS. The transformation from the sky coor-
dinates (xsky, ysky, zsky) back to the intrinsic outflow coor-
dinates (xout , yout , zout) is then exactly the same as in Equa-
tion A1 except with the specific outflow central coordinate,
inclination, and PA.
Three choices of outflow velocity radial profiles are pos-

sible: ‘increasing’, ‘decreasing’, or ‘both’. Each of these is
parameterized in the following way:

Increasing ∶ vout(r) = vmax
(

r
rend

)n

Decreasing ∶ vout(r) = vmax

[

1 −
(

r
rend

)n
]

Both ∶ vout(r) =
⎧

⎪

⎨

⎪

⎩

vmax
(

r
rturn

)n
, r < rturn

vmax
(

2 − r
rturn

)n
, r > rturn

(A6)

where n is the power law index of the radial profile, vmax de-
fines the maximum velocity that occurs at r = rend for ‘in-
creasing’, r = 0 for ‘decreasing’, and r = rturn for ‘both’.
A velocity dispersion profile �out,0(r) can be chosen for the
outflowing gas in the same way as for the galaxy mass com-
ponents.
Next, the LOS velocity and dispersion cubes are con-

structed, and sampled over the sky coordinate frame. For the
composite rotation velocity profile, the LOS projection factor
is cos sin i = sin i (ygal∕Rgal). Similarly, LOS projection is
determined for non-isotropic dispersion profiles and outflow
or radial motion/inflow components.6 The LOS velocity and
dispersion cubes are thus:

V (xsky,ysky, zsky) = vrot(Rgal)

(

ygal
Rgal

)

sin i

+
[

vradial motion(xgal, ygal, zgal)
]

LOS
+ Vsys (A7)

�(xsky, ysky, zsky) =
[

�(Rgal)
]

LOS
, (A8)

where Eq. A1 is used to convert from sky to galaxy coordi-
nates, and Vsys is the systemic velocity of the system.
For the biconical outflow component, these cubes are:

Vout(xsky, ysky, zsky) = vout(rout) cos i′ + Vsys (A9)

�out(xsky, ysky, zsky) =
[

�out,0(rout)
]

LOS , (A10)

6 I.e., as
[

�⃗(xgal, ygal, zgal) ⋅ ẑ
]

or
[

v⃗radial motion(xgal, ygal, zgal) ⋅ ẑ
]

.

where rout =
√

x2out + y
2
out + z

2
out , and i

′ in Eq. A9 ranges
from iout − �outer to iout + �outer depending on the location
within the outflow cone.
In order to construct a full model cube I(xsky, ysky, Vlos),

the information from the velocity and dispersion cubes
V (xsky, ysky, zsky) and �(xsky, ysky, zsky) must be combined
and collapsed along the line of sight (zsky). The composite
velocity profile at a fixed position (xsky,ysky) is the intensity-
weighted sum of all kinematic components along the line of
sight. This requires parameterization of the light distribution
of the galactic system, f (xgal, ygal, zgal), transformed to sky
coordinates (xsky, ysky, zsky) using Eq. A1.
In practice, one option is to assume one (or more) mass

component (e.g., the baryonic disk) emits light, with a con-
stant mass-to-light ratio Υ. This can be approximated by
assuming a 2D Sérsic flux distribution within the galaxy
midplane, combined with a Gaussian profile in the zgal di-
rection with a width related to the assumed Sérsic flatten-
ing q0 and the component Re. In this case, f (Rgal, zgal) =
Σ0 exp[−bnS (Rgal∕Re)

1∕nS ] × exp[−0.5(zgal∕ℎz)2], with
ℎz = q0Re∕1.177.
The biconical outflow light distribution exponentially de-

creases as a function of radius with the following profile and
parameterization:

fout(rout) = A exp
(

−
�rout
rend

)

(A11)

whereA is the flux at rout = 0, and � controls the rate at which
the flux declines.
The intensity-weighted kinematic distribution collapsed

along the line of sight is determined by combining the
LOS velocity, dispersion, and flux cubes, assuming the pro-
file at each position can be described as a Gaussian in ve-
locity Vlos of total flux f (xsky, ysky, zsky) and dispersion
�(xsky, ysky, zsky), centered at V (xsky, ysky, zsky):

I intr.(xsky, ysky, Vlos) =

∑

zsky

⎛

⎜

⎜

⎜

⎜

⎝

f (xsky, ysky, zsky)

�(xsky, ysky, zsky)
√

2�
×

exp
⎧

⎪

⎨

⎪

⎩

−

[

Vlos − V (xsky, ysky, zsky)
]2

2�(xsky, ysky, zsky)2

⎫

⎪

⎬

⎪

⎭

+

fout(xsky, ysky, zsky)

�out(xsky, ysky, zsky)
√

2�
×

exp
⎧

⎪

⎨

⎪

⎩

−

[

Vlos − Vout(xsky, ysky, zsky)
]2

2�out(xsky, ysky, zsky)2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎠

,

(A12)
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using the respective light, velocity, and velocity dispersion
distributions for the outflow component and the galaxy.7
Finally, this intrinsic kinematic model cube is convolved

with a spatial point spread function (PSF) and a spectral line
spread function (LSF) to directly include the impact of in-
strumental and observational effects on the kinematic model.
Specifically, the convolution is performed with a 3D kernel
folding together the spatial PSF and the spectral LSF:

Imod(xsky, ysky, Vlos) = Iintr.(xsky, ysky, Vlos)

⊗
[

PSF(xsky, ysky) ∗ LSF(Vlos)
]

(A13)

This model cube is the end result of the DYSMAL forward
modeling process. The cube can now be used for comparisons
and fitting to observed kinematic data, which we discuss in
Section A.2.

A.2. Fitting Galaxy Kinematics using DYSMAL Models
TheDYSMALmodels presented in the previous subsection

can be used to fit a wide variety of galaxy mass and kinematic
components to a range of observational data.
First, a DYSMALmodel set should be selected based on the

specific application. For instance, this might be comprised
of a disk, bulge, and halo mass components together with an
intrinsic velocity dispersion profile, or it may include a galaxy
disk together with an outflow component. The parameters
of each of these model components are then set to a fixed
value (e.g., fixed bulge-to-total ratio, B∕T ), allowed to vary
as free fit parameters (e.g., free total mass), or are determined
as a function of some other parameter (e.g., fitting directly
for fDM(Re), and then using this to find the halo mass for
a NFW profile; alternatively, setting the halo mass from the
total baryonic mass, using a fixed fgas and a particular stellar
mass-halo mass relation).
Next, depending on the type of observational data, extrac-

tions may need to be made from the DYSMAL model cubes.
If the observations are to be fit in 3D, using IFS cubes, then
the 3D mock DYSMAL cubes are directly comparable to the
data. Alternatively, the models can be used to fit 2D extracted
kinematic maps or 1D extracted kinematic profiles (or slit ob-
servations), for instance fitting both velocity V and dispersion
� simultaneously (though other possibilities are to fit only V ,
or to fit all of V , �, and the flux distribution). This is accom-
plished by applying the same extractionmethodology used for
the observations on the mock cubes (e.g., Gaussian-fit extrac-
tions to 2D velocity and dispersion maps; or flared or straight
slit aperture extraction to 1D profiles).
We stress that all observational effects (including beam-

smearing, the instrumental line spread function, and any
extraction from 3D) are directly included in the resulting

7 Note that if there is an inflow signature from a separate gas component, this
can be added to the model with a separate light distribution and geometry
(i.e., not in Eq. A7), similar to the treatment of the outflow component.

1D/2D/3D DYSMAL models. The full forward modeling of
this procedure therefore allows us to directly fit for the intrin-
sic model properties.
InDysmalPy, fitting can be performed either withMarkov

Chain Monte Carlo (MCMC) parameter space exploration
(using emcee; Foreman-Mackey et al. 2013) or least-squares
fitting (using MPFIT; Markwardt 2009). For MCMC fitting
with emcee, priors log p(�i) are first selected for each free
parameter �i in the DYSMAL model; options include flat or
Gaussian priors (either bounded or unbounded). The likeli-
hood function for our model is defined to be a Gaussian dis-
tribution. For 3D fitting,

log = − 0.5
(

1
f

)

∑

xsky ,ysky ,Vlos

m(xsky, ysky, Vlos) ×

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

Iobs(xsky, ysky, Vlos) − Imod(xsky, ysky, Vlos)

errobs(x,y,V )
[

w(xsky, ysky, Vlos)
]−1∕2

⎤

⎥

⎥

⎦

2

+ log
⎡

⎢

⎢

⎣

2�
(

errobs(xsky ,ysky ,Vlos)
)2

w(xsky, ysky, Vlos)

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

, (A14)

where Imod is from Eq. A13, Iobs is the observed 3D cube,
m(xsky, ysky, Vlos) is a data mask (e.g., removing bad pixels
or low S/N regions),w(xsky, ysky, Vlos) is any weighting to be
applied to the cube (e.g., effectively modifying the uncertain-
ties), and f is an optional factor to account for oversampling
of the data relative to the spatial and spectral resolution of the
data (to approximate the number of independent data points,
removing any impact of oversampling on the relative impor-
tance of the likelihood and priors). For 2D or 1D fitting,

log = −0.5
(

1
f

)

×
∑

X=V ,[�],
[f lux]

⎧

⎪

⎨

⎪

⎩

∑

i
mi

⎡

⎢

⎢

⎢

⎣

wi

(

Xobs,i −Xmod,i
errX,i

)2

+ log
⎛

⎜

⎜

⎝

2� err2X,i
wi

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

,

(A15)

where X is either the velocity V , dispersion �, or flux (e.g.,
1D profiles along the slit V (p), �(p), I(p), or 2D maps of V ,
� and line intensity I), and Xobs and Xmod are the data and
extracted model maps/profiles, respectively. The outer sum
over the maps/profilesX includes only the maps/profiles that
are being used for fitting (e.g., simultaneously fitting veloc-
ity V and dispersion �; see discussion above), and the sum
over i denotes the sum over all pixels or data points in the
maps/profiles. Similar to the 3D log likelihood, mi is the
data mask, wi is any data weighting (or no weighting, with
wi = 1), and f is the optional factor accounting for spatial
data oversampling. The log posterior probability is then
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logP (�|obs) = log(obs|�) + log p(�) + const, (A16)

with the log likelihood as defined above and taking the
prior as the composite of the individual parameter priors,
log p(�) =

∑

i log p(�i).
The “best-fit” parameter values are determined as the max-

imum a posteriori (MAP) values from the posteriors, with the
option to jointly analyze the posteriors of parameters which
exhibit degeneracies, to ensure the MAP values correspond
to high probability regions of the multidimensional poste-
rior distribution. The upper and lower 1� uncertainties for
each parameter are estimated independently, using the short-
est 68% interval of the marginalized posterior (to ensure rea-
sonable uncertainty estimates in cases where the marginal-
ized posterior is peaked near a boundary for the parameter).
Alternatively, fitting can be performed with MPFIT, which

uses the Levenberg-Marquardt technique to perform least-
squares fitting. For the least-squares fitting with DysmalPy,
we define �2kin that is tailored to the data dimensionality. For
3D fitting,

�2kin =
∑

xsky ,ysky ,Vlos

m(xsky, ysky, Vlos) w(xsky, ysky, Vlos)

×

[

Iobs(xsky, ysky, Vlos) − Imod(xsky, ysky, Vlos)
errIobs(xsky ,ysky ,Vlos)

]2

(A17)

where as before, Iobs and Imod are the observed and model
3D cubes, respectively, m(xsky, ysky, Vlos) is a mask based on
the data (e.g., removing bad pixels or low S/N regions) and
w(xsky, ysky, Vlos) is any weighting to be applied to the cube.
For 2D or 1D fitting,

�2kin =
∑

X=V ,[�],
[f lux]

⎡

⎢

⎢

⎣

∑

i
miwi

(

Xobs,i −Xmod,i
errX,i

)2
⎤

⎥

⎥

⎦

, (A18)

where again Xobs and Xmod are the observed and model ve-
locity, dispersion or flux maps/profiles (e.g., the observed
V (p), �(p), and flux I(p) along the slit for 1D profiles), the
outer sum only includes the observed maps/profiles used for
simultaneous fitting (e.g., both V and �, or all of V , �, and
the flux distribution), and mi and wi are the data mask and
any weighting of the data, respectively.
The best-fit parameter values are then taken directly from

the least-squares minimization solution. One approach to de-
rive uncertainties for the least-squares fitting is to then sample
the value of �2kin over a grid of values for all free parameters,
and use this to determine the uncertainty intervals. However,
in practice it is often more computationally efficient to esti-
mate the uncertainties through an accompanying MCMC ex-
ploration of the posterior distribution.

A.3. Importance of Prior Choice in MCMC Fitting
While MCMC fitting provides a number of benefits (e.g.,

simultaneously enabling uncertainty estimation), it is crucial
to consider how the choice of priors impacts the sampled pos-
terior distribution. In MCMC sampling, priors can help to
restrict fits with degeneracies by applying constraints from
ancillary information or physical feasibility (e.g., through
bounding and/or the application of Gaussian priors), so that
the posterior distribution reflects both the likelihood from the
data and these prior constraints. Parameter priors can also
be uniform, so the posterior is driven by the likelihood func-
tion. However, even adopting uniform priors is a choice that
impacts later analysis, because the sampled posterior distri-
bution also depends on how the fit was parameterized.8
The impact of priors is particularly important when ana-

lyzing parameters inferred from the fit values. While not fit
directly, there is an “effective prior” imprinted on the distri-
bution of sample values for these derived parameters. This
“effective prior” is determined by the choice of free fit pa-
rameters and their chosen priors (even uniform priors), and
depends on the relationship between the fit and derived pa-
rameters. Formally, this is simply a change of variables in a
probability distribution function (pdf), going from the fit pa-
rameter’s prior pdf to a transformed pdf. If x and y are related
through y = f (x) and x is fit with a uniform, bounded prior,
then as the total probability must be conserved,9 the effective
prior on ywill be proportional to

|

|

|

|

d
dy

[

f−1(y)
]

|

|

|

|

, where f−1 is

the inverse function (Casella & Berger 2002, Eq. 2.1.10).10
The issue of free parameter and prior selection can have

a large impact when fitting galaxy kinematics using MCMC
sampling with DysmalPy. For example, for a fit with a bary-
onic component and a NFW halo, if log10(Mvir∕M⊙) is cho-
sen as the free parameter with a flat prior, then the distribution
of fDM(Re) = v2DM(Re)∕v

2
circ(Re) for the MCMC sampling

(calculated as “blobs” from theemcee sampler) will often di-
verge towards 0 and 1. This arises in part because a flat prior
on log10(Mvir∕M⊙) is equivalent to a prior for fDM(Re) that
diverges as fDM(Re) → 0, or fDM(Re) → 1, because sam-
pling uniformly from the log10(Mvir∕M⊙) prior produces a
pile-up of log10(Mvir∕M⊙) values that all map to similarly
small/large values of fDM(Re). If fDM(Re) is fairly poorly
constrained by the data (i.e., a shallow likelihood function),
the effective probability distribution for fDM(Re) will thus
primarily reflect this “effective,” diverging prior.

8 For further discussion on the impact of parameter transformations on prob-
ability (i.e., prior and posterior) distributions, see Sivia & Skilling (2006),
Hogg (2012), and Hogg & Foreman-Mackey (2018).

9 I.e., ∫ ba pX (x) dx = ∫ f (b)f (a) pY (y) dy
10 More generally, for a prior pdf pX (x) for x, the transformed prior pdf for

y = f (x) is pY (y) = pX
(

f−1(y)
)

|

|

|

|

d
dy

[

f−1(y)
]

|

|

|

|

, assuming “well-behaved”

functions (i.e., pX (x) is continuous and normalizable, and f−1(y) is contin-
uously differentiable; Casella & Berger 2002, Sec 2.1, Theorem 2.1.5).
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Figure 7. Illustration of how the velocity dispersion and disk radius, and the prior on the baryonic mass, can impact the degeneracy between a
galaxy’s total baryonic mass and its dark matter fraction. There tends to be an anti-correlation between fDM(Re) and log10(Mbar∕M⊙) at constant
�0 andRe,disk , roughly tracing lines of constant vcirc (i.e., total dynamical mass). (Left panel) If the dispersion or disk radius is increased, then the
likelihood degeneracy region shifts towards higher fDM(Re) and higher log10(Mbar∕M⊙) (as illustrated in the left panel). The exact direction and
magnitude of the shifts depend on the detailed model values, but in general a higher vcirc is needed to counterbalance the increased asymmetric
drift correction or stretched rotation curve (for �0 andRe,disk , respectively). (Right panel) For a given fixed �0 andRe,disk , by applying a Gaussian
prior on the baryonic mass, the posterior fDM(Re)–log10(Mbar∕M⊙) degeneracy (dark blue region, right panel) will be modified relative to the
likelihood degeneracy (purple region).

Therefore, if the aim is to measure fDM(Re) rather than
log10(Mvir∕M⊙), it is better to fit directly for fDM(Re).
For this inverted parameterization, the choice of a flat
prior for fDM(Re) corresponds to an effective prior on
log10(Mvir∕M⊙) that is a peaked distribution (i.e., essentially
the inverse of the opposite case that diverges towards the
bounds). Because of this parameterization and prior choice
issue, in this paper we chose to fit directly for fDM(Re), as
this is the quantity of interest.

A.4. DYSMAL Parameter Fitting Degeneracies for
RC41 Curves and the Impact of Priors

Fitting the kinematics of high-redshift galaxies with mass
and kinematic models — such as with DYSMAL — is
complicated by degeneracies between different components.
These degeneracies arise in part from the impact of beam
smearing, given the relatively low spatial resolution of the ob-
servations, and from relatively modest S/N of the data, even
for very deep observations such as our RC41 sample. At
lower S/N and lower spatial resolution, it can be difficult to
disentangle the velocity signatures of a bulge, thick disk, and
halo, as profile differences can be smoothed out to the point
where they cannot be distinguished within the observational
uncertainties.11 Thus, while the lower halo concentrations at
higher redshifts should help to break the disk-halo degener-
acy that is observed in local galaxies (see the discussion in
Paper I), the relatively limited spatial resolution and S/N of
our observations compared to what is currently achievable for

11 We note that while we focus here on how these issues impact parametric
kinematic modeling, these resolution and S/N limitations of the data also
complicate constraints of galaxy kinematics using nonparametric methods.

local galaxies tends to produce a similar baryon-halo degen-
eracy.
When modeling our galaxies with a bulge, a thick disk, a

NFW halo, and a constant intrinsic velocity dispersion (with
free parameters log10(Mbar∕M⊙), fDM(Re), Re,disk , and �0),
we tend to find an anti-correlation between the total baryonic
mass and the darkmatter fractions. This degeneracy is not un-
expected, as it roughly traces lines of constant vcirc, reflecting
a trade-off between dark and baryonic matter that is accentu-
ated by the smoothing of the different velocity curve shapes
by the effects of beam smearing (i.e., the total mass is better
constrained than the mass partitioning). However, the exact
position and shape of this degeneracy depends on the values
of other model parameters, particularly the intrinsic velocity
dispersion �0 and the disk effective radius, Re,disk .
The values of �0 and Re,disk are connected to the dark

matter fraction–baryonic mass degeneracy through the asym-
metric drift correction (see Sec. 6.2) and both the defini-
tion fDM(Re ≡ Re,disk) and the role of Re,disk in setting
the model rotation curve profile, respectively. In general, in-
creasing both �0 and Re,disk results in shifting the region of
highest fDM(Re)–log10(Mbar∕M⊙) likelihood towards lines
of higher vcirc, as illustrated in the left panel of Figure 7.
Increasing �0 leads to larger asymmetric drift corrections,
or lower vrot for a fixed model vcirc (i.e., fixed total mass).
Matching the observed vrot thus requires increasing vcirc.
When increasing Re,disk , the intrinsic rotation curve profile
is stretched to peak/flatten at larger radii, without impacting
the maximum rotation velocity. Therefore, to match the inner
rising profile of the observed vrot(r), the total mass must also
be increased (i.e., higher model vcirc). The exact position and
extent of this degeneracy is more complex than this fixed-
value illustration, as all four parameters (log10(Mbar∕M⊙),
fDM(Re), Re,disk , �0) are free. Nonetheless, this simplified
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Figure 8. Comparison of the marginalized prior, posterior, and approximate likelihood contours for the free parameters in the 1D fitting for
one galaxy in our sample (BX482). The normalized priors for each parameter are shown in the histogram panels (diagonal) as blue dotted
curves. For Gaussian priors, the center and standard deviation are marked with vertical/horizontal blue lines and shaded regions, respectively.
The marginalized approximate likelihood and posterior distributions are shown in orange and black/grey, respectively, with the 1 and 2 �
intervals denoted with the 2D contours (with a 2D Gaussian filter of standard deviation 0.5 bins applied for clarity). The Gaussian priors
on log10(Mbar∕M⊙) and Re,disk impact the peak and broadness of the posterior distribution for both parameters, and additionally contribute
to a narrower fDM(Re)–log10(Mbar∕M⊙) degeneracy, both along the anti-correlation (log10(Mbar∕M⊙)) and perpendicular to it (Re,disk). The
maximum a posteriori (MAP) values of each parameter (found by joint posterior analysis) are shown with white plus signs. We also show the
1D observed V (r) and �(r) curves along with the 1D-extracted MAP model (black circles, red squares, respectively) in the upper-right inset
panels.

picture helps to understand the likelihood degeneracy for the
full fit, as a range of �0 or Re,disk values will contribute to a
broadening of the degeneracy region (i.e., spanning more val-
ues of vcirc), roughly corresponding to overlapping regions of
fixed �0 and Re,disk .
The final posterior degeneracy between fDM(Re) and

log10(Mbar∕M⊙) depends not only on the likelihood degener-
acy, but also on the Gaussian priors on log10(Mbar∕M⊙) and
Re,disk . In the limit where the data are not highly informative,
the Gaussian priors will help to restrict the posteriors of these
parameters to narrower ranges. Thus, the log10(Mbar∕M⊙)
prior will help break the fDM(Re)–log10(Mbar∕M⊙) degener-
acy by “picking out” a subsection of the log10(Mbar∕M⊙) val-

ues covered (see Figure 7, right panel). The Re,disk prior will
also have an impact, since a narrowing of the Re,disk param-
eter space will translate to narrowing of the diagonal shift of
the fDM(Re)–log10(Mbar∕M⊙) anti-correlation (effectively,
fewer overlapping degeneracy regions, as fewer Re,disk val-
ues are highly probable).
To illustrate the parameter degeneracies and the role of the

priors, in Figure 8 we show the prior, likelihood, and poste-
rior distributions in all 1D and 2D projected spaces for one
galaxy in our sample (BX482). The posterior distribution
(black lines and black/grey filled regions) is determined from
the 1DMCMC sampler chain, and the likelihood distribution
(orange lines and contours) is approximated by performing a
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separate MCMC sampling with uninformative (i.e., bounded
flat) priors for all parameters.12 The 1D priors are shownwith
dotted blue lines, and the center and standard deviation of the
Gaussian priors on log10(Mbar∕M⊙) and Re,disk are marked
with blue lines and shaded regions in the projected 1D and
2D panels, and the 1D histograms are all normalized, as the
correct scaling factors have not been determined.
The impact of the Gaussian priors on log10(Mbar∕M⊙)

and Re,disk can be seen in both the 1D and 2D histograms,
as the posterior peaks for these parameters lie between the
prior and likelihood peaks (as do the MAP values, which
are found by jointly analyzing all free parameters; white
plus signs), and the marginalized posterior distribution peaks
are less broad than those of the likelihood. Because of the

fDM(Re)–log10(Mbar∕M⊙) degeneracy (bottom left panel),
the log10(Mbar∕M⊙) prior also impacts the posterior distri-
bution of fDM(Re), and yields a narrower posterior degener-
acy than for the likelihood distribution. The restriction of the
Re,disk values from the prior also contributes to narrowing of
the degeneracy region, but in the direction perpendicular to
the anti-correlation (i.e., spanning a narrower range of con-
stant vcirc; see Figure 7). Although the actual posterior prob-
ability distributions for each galaxy will also depend on other
model parameters and on the peculiarities of the observed ro-
tation and dispersion curves, the trends discussed here ac-
count for the overall qualitative properties of the posteriors
determined from our MCMC analysis of the RC41 sample.
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