3,816 research outputs found
Supersymmetric Distributions, Hilbert Spaces of Supersymmetric Functions and Quantum Fields
The recently investigated Hilbert-Krein and other positivity structures of
the superspace are considered in the framework of superdistributions. These
tools are applied to problems raised by the rigorous supersymmetric quantum
field theory.Comment: 24 page
In-flight calibration of the Hot Ion Analyser on board Cluster
The Hot Ion Analyser (HIA), part of the Cluster Ion Spectrometry experiment,
has the objective to measure the three-dimensional velocity distributions of
ions. Due to a variety of factors (exposure to radiation, detector fatigue
and aging, changes in the operating parameters, etc.), the particles' detection
efficiency changes over time, prompting for continuous in-flight calibration.
This is achieved by comparing the HIA data with the data provided by the
WHISPER (Waves of HIgh frequency and Sounder for Probing of Electron
density by Relaxation) experiment on magnetosheath intervals, for the high-sensitivity
section of the instrument, or solar wind intervals, for the low-sensitivity
section. The paper presents in detail the in-flight calibration methodology,
reports on the work carried out for calibrating HIA and discusses plans to
extend this activity in order to ensure the instrument's highest data accuracy
Mining the ESO WFI and INT WFC archives for known Near Earth Asteroids. Mega-Precovery software
The ESO/MPG WFI and the INT WFC wide field archives comprising 330,000 images
were mined to search for serendipitous encounters of known Near Earth Asteroids
(NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 152 asteroids (44
PHAs and 108 other NEAs) were identified using the PRECOVERY software, their
astrometry being measured on 761 images and sent to the Minor Planet Centre.
Both recoveries and precoveries were reported, including prolonged orbital arcs
for 18 precovered objects and 10 recoveries. We analyze all new opposition data
by comparing the orbits fitted before and after including our contributions. We
conclude the paper presenting Mega-Precovery, a new online service focused on
data mining of many instrument archives simultaneously for one or a few given
asteroids. A total of 28 instrument archives have been made available for
mining using this tool, adding together about 2.5 million images forming the
Mega-Archive.Comment: Accepted for publication in Astronomische Nachrichten (Sep 2012
Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects
We present numerical calculations of the equation of state for dense matter
in high magnetic fields, using a temperature dependent Thomas-Fermi theory with
a magnetic field that takes all Landau levels into account. Free energies for
atoms and matter are also calculated as well as profiles of the electron
density as a function of distance from the atomic nucleus for representative
values of the magnetic field strength, total matter density, and temperature.
The Landau shell structure, which is so prominent in cold dense matter in high
magnetic fields, is still clearly present at finite temperature as long as it
is less than approximately one tenth of the cyclotron energy. This structure is
reflected in an oscillatory behaviour of the equation of state and other
thermodynamic properties of dense matter and hence also in profiles of the
density and pressure as functions of depth in the surface layers of magnetic
neutron stars. These oscillations are completely smoothed out by thermal
effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap
Influence of cardiac motion on porcine AV node for the non-invasive treatment of atrial fibrillation with a scanned carbon ion beam
Influence of cardiac motion on pulmonary veins for the non-invasive treatment of atrial fibrillation with a scanned cabon ion beam
Decoding sequence learning from single-trial intracranial EEG in humans.
We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes
Unstable states in QED of strong magnetic fields
We question the use of stable asymptotic scattering states in QED of strong
magnetic fields. To correctly describe excited Landau states and photons above
the pair creation threshold the asymptotic fields are chosen as generalized
Licht fields. In this way the off-shell behavior of unstable particles is
automatically taken into account, and the resonant divergences that occur in
scattering cross sections in the presence of a strong external magnetic field
are avoided. While in a limiting case the conventional electron propagator with
Breit-Wigner form is obtained, in this formalism it is also possible to
calculate -matrix elements with external unstable particles.Comment: Revtex, 7 pages. To appear in Phys. Rev. D53(2
Recurrence relation for relativistic atomic matrix elements
Recurrence formulae for arbitrary hydrogenic radial matrix elements are
obtained in the Dirac form of relativistic quantum mechanics. Our approach is
inspired on the relativistic extension of the second hypervirial method that
has been succesfully employed to deduce an analogous relationship in non
relativistic quantum mechanics. We obtain first the relativistic extension of
the second hypervirial and then the relativistic recurrence relation.
Furthermore, we use such relation to deduce relativistic versions of the
Pasternack-Sternheimer rule and of the virial theorem.Comment: 10 pages, no figure
- …
