3,816 research outputs found

    Supersymmetric Distributions, Hilbert Spaces of Supersymmetric Functions and Quantum Fields

    Full text link
    The recently investigated Hilbert-Krein and other positivity structures of the superspace are considered in the framework of superdistributions. These tools are applied to problems raised by the rigorous supersymmetric quantum field theory.Comment: 24 page

    In-flight calibration of the Hot Ion Analyser on board Cluster

    Get PDF
    The Hot Ion Analyser (HIA), part of the Cluster Ion Spectrometry experiment, has the objective to measure the three-dimensional velocity distributions of ions. Due to a variety of factors (exposure to radiation, detector fatigue and aging, changes in the operating parameters, etc.), the particles' detection efficiency changes over time, prompting for continuous in-flight calibration. This is achieved by comparing the HIA data with the data provided by the WHISPER (Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation) experiment on magnetosheath intervals, for the high-sensitivity section of the instrument, or solar wind intervals, for the low-sensitivity section. The paper presents in detail the in-flight calibration methodology, reports on the work carried out for calibrating HIA and discusses plans to extend this activity in order to ensure the instrument's highest data accuracy

    Mining the ESO WFI and INT WFC archives for known Near Earth Asteroids. Mega-Precovery software

    Full text link
    The ESO/MPG WFI and the INT WFC wide field archives comprising 330,000 images were mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 152 asteroids (44 PHAs and 108 other NEAs) were identified using the PRECOVERY software, their astrometry being measured on 761 images and sent to the Minor Planet Centre. Both recoveries and precoveries were reported, including prolonged orbital arcs for 18 precovered objects and 10 recoveries. We analyze all new opposition data by comparing the orbits fitted before and after including our contributions. We conclude the paper presenting Mega-Precovery, a new online service focused on data mining of many instrument archives simultaneously for one or a few given asteroids. A total of 28 instrument archives have been made available for mining using this tool, adding together about 2.5 million images forming the Mega-Archive.Comment: Accepted for publication in Astronomische Nachrichten (Sep 2012

    Heart beat modelling in a water and anthropomorphic phantom

    Get PDF

    Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects

    Full text link
    We present numerical calculations of the equation of state for dense matter in high magnetic fields, using a temperature dependent Thomas-Fermi theory with a magnetic field that takes all Landau levels into account. Free energies for atoms and matter are also calculated as well as profiles of the electron density as a function of distance from the atomic nucleus for representative values of the magnetic field strength, total matter density, and temperature. The Landau shell structure, which is so prominent in cold dense matter in high magnetic fields, is still clearly present at finite temperature as long as it is less than approximately one tenth of the cyclotron energy. This structure is reflected in an oscillatory behaviour of the equation of state and other thermodynamic properties of dense matter and hence also in profiles of the density and pressure as functions of depth in the surface layers of magnetic neutron stars. These oscillations are completely smoothed out by thermal effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap

    Decoding sequence learning from single-trial intracranial EEG in humans.

    Get PDF
    We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes

    Unstable states in QED of strong magnetic fields

    Get PDF
    We question the use of stable asymptotic scattering states in QED of strong magnetic fields. To correctly describe excited Landau states and photons above the pair creation threshold the asymptotic fields are chosen as generalized Licht fields. In this way the off-shell behavior of unstable particles is automatically taken into account, and the resonant divergences that occur in scattering cross sections in the presence of a strong external magnetic field are avoided. While in a limiting case the conventional electron propagator with Breit-Wigner form is obtained, in this formalism it is also possible to calculate SS-matrix elements with external unstable particles.Comment: Revtex, 7 pages. To appear in Phys. Rev. D53(2

    Recurrence relation for relativistic atomic matrix elements

    Full text link
    Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.Comment: 10 pages, no figure
    corecore