691 research outputs found

    Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder

    Get PDF
    Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition with hallmark behavioral manifestations including impaired social communication and restricted repetitive behavior. In addition, many affected individuals display metabolic imbalances, immune dysregulation, gastrointestinal (GI) dysfunction, and altered gut microbiome compositions. Methods: We sought to better understand non-behavioral features of ASD by determining molecular signatures in peripheral tissues through mass spectrometry methods (LC/MS and DMS-MS) with broad panels of identified metabolites. Herein, we present the global metabolome of 231 plasma and 97 fecal samples from a large cohort of children with ASD and typically developing (TD) controls. Results: Differences in amino acid, lipid, and xenobiotic metabolism discriminate ASD and TD samples. Our results implicate oxidative stress and mitochondrial dysfunction, hormone level elevations, lipid profile changes, and altered levels of phenolic microbial metabolites. We also reveal correlations between specific metabolite profiles and clinical behavior scores. Furthermore, a summary of metabolites modestly associated with GI dysfunction in ASD are provided, and a pilot study of metabolites that can be transferred via fecal microbial transplant into mice were identified. Conclusions: These findings support a connection between metabolism, GI physiology, and complex behavioral traits, and may advance discovery and development of molecular biomarkers for ASD

    Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow over the Central and Southeast U.S.

    Get PDF
    Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid- and mixed-phase scavenging, entrainment of free tropospheric air, and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high resolution (dx <= 3 km) WRF-Chem simulations of a severe storm, an airmass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF-Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid-phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low background CH3OOH. In the airmass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF-Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O

    Accurate and exact CNV identification from targeted high-throughput sequence data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However, methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with map information for the identification of deletions and duplications in targeted sequence data.</p> <p>Results</p> <p>Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint. With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low false-positive rate.</p> <p>Conclusions</p> <p>Application of this method allows for identification of gains and losses in targeted sequence data, providing comprehensive mutation screening when combined with a short read aligner.</p

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    Aplastic anemia associated with interferon alpha 2a in a patient with chronic hepatitis C virus infection: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hepatitis-associated aplastic anemia is a common syndrome in patients with bone marrow failure. However, hepatitis-associated aplastic anemia is an immune-mediated disease that does not appear to be caused by any of the known hepatitis viruses including hepatitis C virus. In addition, to the best of our knowledge there are no reported cases of patients with chronic hepatitis C virus infection developing aplastic anemia associated with pegylated interferon alpha 2a treatment.</p> <p>Case presentation</p> <p>We report the case of a 46-year-old Greek man who developed severe aplastic anemia during treatment with pegylated interferon alpha 2a for chronic hepatitis C virus infection. He presented with generalized purpura and bruising, as well as pallor of the skin and mucous membranes. His blood tests showed pancytopenia. He underwent allogeneic bone marrow transplantation after completing two courses of immunosuppressive therapy with antithymocyte globulin and cyclosporin A.</p> <p>Conclusions</p> <p>The combination of a specific environmental precipitant represented by the hepatitis C virus infection, an altered metabolic detoxification pathway due to treatment with pegylated interferon alpha 2a and a facilitating genetic background such as polymorphism in metabolic detoxification pathways and specific human leukocyte antigen genes possibly conspired synergistically in the development of aplastic anemia in this patient. Our case clearly shows that the causative role of pegylated interferon alpha 2a in the development of aplastic anemia must not be ignored.</p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Expert Panel Curation of 113 Primary Mitochondrial Disease Genes for the Leigh Syndrome Spectrum

    Get PDF
    OBJECTIVE: Primary mitochondrial diseases (PMDs) are heterogeneous disorders caused by inherited mitochondrial dysfunction. Classically defined neuropathologically as subacute necrotizing encephalomyelopathy, Leigh syndrome spectrum (LSS) is the most frequent manifestation of PMD in children, but may also present in adults. A major challenge for accurate diagnosis of LSS in the genomic medicine era is establishing gene-disease relationships (GDRs) for this syndrome with >100 monogenic causes across both nuclear and mitochondrial genomes. METHODS: The Clinical Genome Resource (ClinGen) Mitochondrial Disease Gene Curation Expert Panel (GCEP), comprising 40 international PMD experts, met monthly for 4 years to review GDRs for LSS. The GCEP standardized gene curation for LSS by refining the phenotypic definition, modifying the ClinGen Gene-Disease Clinical Validity Curation Framework to improve interpretation for LSS, and establishing a scoring rubric for LSS. RESULTS: The GDR with LSS across the nuclear and mitochondrial genomes was classified as definitive for 31/114 gene-disease relationships curated (27%); moderate for 38 (33%); limited for 43 (38%); and 2 as disputed (2%). Ninety genes were associated with autosomal recessive inheritance, 16 were maternally inherited, 5 autosomal dominant, and 3 X-linked. INTERPRETATION: GDRs for LSS were established for genes across both nuclear and mitochondrial genomes. Establishing these GDRs will allow accurate variant interpretation, expedite genetic diagnosis of LSS, and facilitate precision medicine, multi-system organ surveillance, recurrence risk counselling, reproductive choice, natural history studies and eligibility for interventional clinical trials. This article is protected by copyright. All rights reserved

    Tuberculosis in Pediatric Antiretroviral Therapy Programs in Low- and Middle-Income Countries: Diagnosis and Screening Practices

    Get PDF
    Background The global burden of childhood tuberculosis (TB) is estimated to be 0.5 million new cases per year. Human immunodeficiency virus (HIV)-infected children are at high risk for TB. Diagnosis of TB in HIV-infected children remains a major challenge. Methods We describe TB diagnosis and screening practices of pediatric antiretroviral treatment (ART) programs in Africa, Asia, the Caribbean, and Central and South America. We used web-based questionnaires to collect data on ART programs and patients seen from March to July 2012. Forty-three ART programs treating children in 23 countries participated in the study. Results Sputum microscopy and chest Radiograph were available at all programs, mycobacterial culture in 40 (93%) sites, gastric aspiration in 27 (63%), induced sputum in 23 (54%), and Xpert MTB/RIF in 16 (37%) sites. Screening practices to exclude active TB before starting ART included contact history in 41 sites (84%), symptom screening in 38 (88%), and chest Radiograph in 34 sites (79%). The use of diagnostic tools was examined among 146 children diagnosed with TB during the study period. Chest Radiograph was used in 125 (86%) children, sputum microscopy in 76 (52%), induced sputum microscopy in 38 (26%), gastric aspirate microscopy in 35 (24%), culture in 25 (17%), and Xpert MTB/RIF in 11 (8%) children. Conclusions Induced sputum and Xpert MTB/RIF were infrequently available to diagnose childhood TB, and screening was largely based on symptom identification. There is an urgent need to improve the capacity of ART programs in low- and middle-income countries to exclude and diagnose TB in HIV-infected childre

    Segmented flow generator for serial crystallography at the European X-ray free electron laser

    Get PDF
    Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported
    corecore