979 research outputs found

    The Effects of Dissolved Methane upon Liquid Argon Scintillation Light

    Get PDF
    In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.Comment: 18 pages, 11 figures Updated to match published versio

    Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke

    Get PDF
    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement

    Artificial intelligence in fracture detection: a systematic review and meta-analysis

    Get PDF
    Background: Patients with fractures are a common emergency presentation and may be misdiagnosed at radiologic imaging. An increasing number of studies apply artificial intelligence (AI) techniques to fracture detection as an adjunct to clinician diagnosis. Purpose: To perform a systematic review and meta-analysis comparing the diagnostic performance in fracture detection between AI and clinicians in peer-reviewed publications and the gray literature (ie, articles published on preprint repositories). Materials and Methods: A search of multiple electronic databases between January 2018 and July 2020 (updated June 2021) was performed that included any primary research studies that developed and/or validated AI for the purposes of fracture detection at any imaging modality and excluded studies that evaluated image segmentation algorithms. Meta-analysis with a hierarchical model to calculate pooled sensitivity and specificity was used. Risk of bias was assessed by using a modified Prediction Model Study Risk of Bias Assessment Tool, or PROBAST, checklist. Results: Included for analysis were 42 studies, with 115 contingency tables extracted from 32 studies (55061 images). Thirty-seven studies identified fractures on radiographs and five studies identified fractures on CT images. For internal validation test sets, the pooled sensitivity was 92% (95% CI: 88, 93) for AI and 91% (95% CI: 85, 95) for clinicians, and the pooled specificity was 91% (95% CI: 88, 93) for AI and 92% (95% CI: 89, 92) for clinicians. For external validation test sets, the pooled sensitivity was 91% (95% CI: 84, 95) for AI and 94% (95% CI: 90, 96) for clinicians, and the pooled specificity was 91% (95% CI: 81, 95) for AI and 94% (95% CI: 91, 95) for clinicians. There were no statistically significant differences between clinician and AI performance. There were 22 of 42 (52%) studies that were judged to have high risk of bias. Meta-regression identified multiple sources of heterogeneity in the data, including risk of bias and fracture type. Conclusion: Artificial intelligence (AI) and clinicians had comparable reported diagnostic performance in fracture detection, suggesting that AI technology holds promise as a diagnostic adjunct in future clinical practice

    A comparison of three methods for estimating call densities of migrating bowhead whales using passive acoustic monitoring

    Get PDF
    TAM thanks partial support by Centro de Estatistica e Aplicações, Universidade de Lisboa (funded by FCT—Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013).Various methods for estimating animal density from visual data, including distance sampling (DS) and spatially explicit capture-recapture (SECR), have recently been adapted for estimating call density using passive acoustic monitoring (PAM) data, e.g., recordings of animal calls. Here we summarize three methods available for passive acoustic density estimation: plot sampling, DS, and SECR. The first two require distances from the sensors to calling animals (which are obtained by triangulating calls matched among sensors), but SECR only requires matching (not localizing) calls among sensors. We compare via simulation what biases can arise when assumptions underlying these methods are violated. We use insights gleaned from the simulation to compare the performance of the methods when applied to a case study: bowhead whale call data collected from arrays of directional acoustic sensors at five sites in the Beaufort Sea during the fall migration 2007–2014. Call detections were manually extracted from the recordings by human observers simultaneously scanning spectrograms of recordings from a given site. The large discrepancies between estimates derived using SECR and the other two methods were likely caused primarily by the manual detection procedure leading to non-independent detections among sensors, while errors in estimated distances between detected calls and sensors also contributed to the observed patterns. Our study is among the first to provide a direct comparison of the three methods applied to PAM data and highlights the importance that all assumptions of an analysis method need to be met for correct inference.Publisher PDFPeer reviewe

    Preclinical Incorporation Dosimetry of [18F]FACH—A Novel 18F-Labeled MCT1/MCT4 Lactate Transporter Inhibitor for Imaging Cancer Metabolism with PET

    Get PDF
    Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g., colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis, and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (ODs) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13–15 kg). The animals were anesthetized and subjected to sequential hybrid Positron Emission Tomography and Computed Tomography (PET/CT) up to 5 h after an intravenous (iv) injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time–activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in Publication 103 of the International Commission of Radiation Protection (ICRP103). The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder (50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq), followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis, the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighting factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would rise to 20.6 µSv/MBq. In this case, the ED to humans upon an iv application of ~300 MBq [18F]FACH would be about 6.2 mSv. This risk assessment encourages the translation of [18F]FACH into clinical study phases and the further investigation of its potential as a clinical tool for cancer imaging with PET

    Non-Traditional Presenting Grade II Brain Meningioma: A Case Study

    Get PDF
    Meningioma is a relatively common form of cancer, occurring in approximately 97 out of 100,000 individuals. Although it arises from the meninges surrounding the central nervous system (CNS) rather than from neurons, it is classified with CNS tumors due to overlapping symptoms caused by compression of nerves and vessels in the head. Extracranial metastasis is rare, at less than 1%, and correlates with reduced survival rates

    Searching For Dark Matter with Plasma Haloscopes

    Full text link
    We summarise the recent progress of the Axion Longitudinal Plasma HAloscope (ALPHA) Consortium, a new experimental collaboration to build a plasma haloscope to search for axions and dark photons. The plasma haloscope is a novel method for the detection of the resonant conversion of light dark matter to photons. ALPHA will be sensitive to QCD axions over almost a decade of parameter space, potentially discovering dark matter and resolving the Strong CP problem. Unlike traditional cavity haloscopes, which are generally limited in volume by the Compton wavelength of the dark matter, plasma haloscopes use a wire metamaterial to create a tuneable artificial plasma frequency, decoupling the wavelength of light from the Compton wavelength and allowing for much stronger signals. We develop the theoretical foundations of plasma haloscopes and discuss recent experimental progress. Finally, we outline a baseline design for ALPHA and show that a full-scale experiment could discover QCD axions over almost a decade of parameter space.Comment: Endorsers: Jens Dilling, Michael Febbraro, Stefan Knirck, and Claire Marvinney. 26 pages, 17 figures, version accepted in Physical Review

    Leptotene/Zygotene Chromosome Movement Via the SUN/KASH Protein Bridge in Caenorhabditis elegans

    Get PDF
    The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2–dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates
    • …
    corecore