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Abstract
Various methods for estimating animal density from visual data, including distance 
sampling (DS) and spatially explicit capture-recapture (SECR), have recently been 
adapted for estimating call density using passive acoustic monitoring (PAM) data, 
e.g., recordings of animal calls. Here we summarize three methods available for pas-
sive acoustic density estimation: plot sampling, DS, and SECR. The first two require 
distances from the sensors to calling animals (which are obtained by triangulat-
ing calls matched among sensors), but SECR only requires matching (not localiz-
ing) calls among sensors. We compare via simulation what biases can arise when 
assumptions underlying these methods are violated. We use insights gleaned from 
the simulation to compare the performance of the methods when applied to a case 
study: bowhead whale call data collected from arrays of directional acoustic sensors 
at five sites in the Beaufort Sea during the fall migration 2007–2014. Call detec-
tions were manually extracted from the recordings by human observers simultane-
ously scanning spectrograms of recordings from a given site. The large discrepan-
cies between estimates derived using SECR and the other two methods were likely 
caused primarily by the manual detection procedure leading to non-independent 
detections among sensors, while errors in estimated distances between detected calls 
and sensors also contributed to the observed patterns. Our study is among the first 
to provide a direct comparison of the three methods applied to PAM data and high-
lights the importance that all assumptions of an analysis method need to be met for 
correct inference.
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Spatially explicit capture-recapture

Handling Editor: Luiz Duczmal.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10651-021-00506-3&domain=pdf


 Environmental and Ecological Statistics

1 3

1 Introduction

Passive acoustic monitoring (PAM) is a non-invasive method for monitoring ani-
mals in their natural environment that involves recording the sounds that the animals 
produce (e.g., calls, songs and echolocation clicks—hereafter generically referred 
to as “calls”). It has proven to be an important tool for monitoring wildlife popula-
tions, including both aquatic animals (e.g., shrimp, fish and cetaceans, Lammers and 
Munger 2016; sharks, Heupel et  al. 2004) and terrestrial animals (e.g., birds and 
amphibians, Acevedo and Villanueva-Rivera 2016; elephants, Wrege et  al. 2017; 
primates, Kalan et al. 2015; frogs, Stevenson et al. 2015). PAM is gaining impor-
tance for mitigation management and the protection of endangered species (e.g., Van 
Parijs et al. 2009; Hildebrand et al. 2015; Brunoldi et al. 2016; Jaramillo-Legorreta 
et al. 2017).

Using PAM data for monitoring wildlife populations generally involves using 
acoustic data to estimate either absolute animal density (number of animals per unit 
area), or some index of relative animal density such as call density (number of calls 
per unit area per unit time) or call counts (number of calls per unit time detected 
on a sensor). In general, estimating animal density from PAM requires additional a 
priori information about the average sound production rate by the individual animals 
during different behavioral states, which may not be available. For this reason, this 
paper does not attempt to compare absolute density estimates. We focus instead on 
methods for estimating relative density from PAM data, specifically for estimating 
call density. Call densities have advantages over simple call counts in that they can 
account for variation in detectability over time or space, avoiding the need to assume 
that detectability is constant when interpreting any observed pattern. However, addi-
tional data and analyses are required to account for detectability.

The main statistical methods for estimating animal density include spatially 
explicit capture-recapture (SECR, e.g., Borchers and Efford 2008; Dawson and 
Efford 2009; Marques et al. 2012; Martin et al. 2013; Stevenson et al. 2015), dis-
tance sampling (DS, e.g., Buckland et al. 2015) and plot sampling (PS, e.g., Vilchis 
et al. 2006). Each of these have been adapted for use in estimating call density from 
PAM data (see reviews by Thomas and Marques 2012; Marques et al. 2013). In this 
paper, we present a comparison of PS, DS and SECR and examine their relative per-
formance when applied to the same real-world PAM dataset.

Each method requires different assumptions and also demands different capabili-
ties from the PAM system in terms of the ability to localize detected calls. Both 
PS and DS require explicit distances between sensors and calls, while SECR only 
requires matching detected calls among acoustic sensors. In some specific cases, it 
is possible to estimate distances to calls from a single instrument (e.g., using echoes, 
Tiemann et al. 2006, or modal sound separation, Marques et al. 2011); however, for 
most PAM data, this typically requires analyzing the relative time-of-arrival of the 
call among multiple sensors. For moving PAM systems, e.g., a hydrophone array 
towed by a ship, distances can be obtained by triangulating multiple call positions 
from a static source using a moving baseline (Barlow and Taylor 2005; Lewis et al. 
2017). Here we focus on fixed PAM systems (sensors mounted or moored on the 
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seafloor), and use a dataset of call detections obtained from recordings made with 
directional sensors that enabled us to triangulate individual call positions simply and 
quickly without precise time-of-arrival estimates. All these techniques require some 
form of cross-sensor matching, where the same call is recognized on different sen-
sors with a relative timing precision, the scale of which depends on the distance 
between the sensors (Thode et al. 2012).

A comparison between the three density estimation methods has rarely been 
undertaken with PAM data, as in most cases the data have limited the analyses to 
a particular method. For example, Phillips (2016) compared DS and SECR esti-
mates of animal density from a combination of PAM and focal follow data against a 
small population of known size and concluded that they generally produced similar 
results. In this study, we use a single large PAM dataset (without auxiliary data from 
a different source) consisting of > 680,000 bowhead whale calls in the Beaufort Sea, 
collected by Greeneridge Sciences, Inc. (Santa Barbara, California), on behalf of 
Shell Exploration and Production Company (SEPCO) over an 8-year monitoring 
period (2007–2014). The required data for each method—distances to the calls for 
DS and PS and matched calls across sensors for SECR—were all available from this 
single dataset. Since the same dataset was used for all three estimation methods, any 
discrepancies in results must arise from violations of one or more of the assump-
tions for the respective methods. We also created a simulation tool to examine the 
robustness of the density estimation methods to various violations of underlying 
assumptions.

We first describe how to estimate call densities from PAM data using PS, DS, and 
SECR, and the assumptions underlying these methods. We test via simulation what 
biases may arise when these assumptions are violated. We then analyze the bowhead 
whale data with each method, compare the resulting call densities and detection 
functions (where applicable) and discuss the observed discrepancies between the 
methods using insights gleaned from the simulation. Lastly, we discuss the implica-
tions of our findings in the wider context of density estimation with PAM.

2  Methods for estimating call densities

We focus on calls in this study, although the methods apply to other sounds pro-
duced by the animals as well. Marques et al. (2013) described four steps for estimat-
ing call densities from PAM data:

1. Identify calls produced by animals of the target population that relate to animal 
density, i.e., calls that are produced by a known proportion of the population (e.g., 
adult males) with some regularity following a mean call production rate (given, e.g., 
as the number of calls produced by an individual per day).

2. Collect a sample of n detections of calls using a well-designed survey protocol 
(e.g., the calls detected in the acoustic recordings in Fig. 1).

3. Estimate the false positive rate f , i.e., the rate of incorrectly classifying a 
detected sound as the call of the target species.

4. Estimate the average probability of detecting a call p within the search area.
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More than one method is available for each step. While each of these four steps is 
necessary to estimate call density and relies on the previous steps, this paper focuses 
on a comparison of different methods for step 4, i.e., estimating the probability of 
detecting a call. In order to estimate animal density from PAM data, we would need 
to convert call densities into animal densities in a fifth step which requires obtaining 
a conversion factor (e.g., the mean call production rate per individual, Marques et al. 
2013).

To familiarize the reader with the four steps of PAM call density estimation and 
the bowhead whale dataset used in this study, we present a simple hypothetical 
example in Fig. 1. We are interested in estimating call density of bowhead whales 
during their fall migration from Canada into the Bering and Chukchi Seas, hence 
we use all calls produced by bowhead whales (Mathias et  al. 2008) (step 1). For 
step 2, we moor seven sensors at our study site in shallow waters (approximately 
50 m), each capable of measuring the azimuth to the sounds they record. For reasons 
explained below related to localizing calls, the spacing of the sensors should be cho-
sen that calls produced near one sensor (e.g., sensor A in Fig. 1) have a high prob-
ability of being detected at neighboring sensors (B and C). While the sensors are 
recording, bowhead whales migrate through the area and make calls (e.g., whale W1 
produces call C1) or not (e.g., silent whale W3). Some calls are not detected (e.g., 
C1), while others are detected by one sensor (e.g., C4) or multiple sensors (e.g., C2). 
Other sounds might also be detected by the sensors and falsely classified as whale 
calls (e.g., C3).

As part of step 2, the recordings are analyzed for acoustic detections using 
either (i) a manual search protocol where human observers scan the recordings 
for calls, e.g., visually screening spectrograms of the acoustic data, or (ii) an 
automated, computer-based, detection and classification algorithm. The latter 

Fig. 1  Example PAM survey design based on the bowhead whale study using a configuration of seven 
acoustic sensors moored to the seafloor (red dots A–G) where each sensor represents a vertex in regular 
triangles with 7 km edges. Pink lines are azimuths to the call locations with uncertainty (light pink). W 
whale, S ship, C sounds produced by whales or ships identified as calls
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generally requires that a false positive rate be estimated (see step 3 above), typi-
cally by comparing the automatic detections with detections acquired by a human 
observer (as in (i)). In the case of large datasets, not all automated detections 
need to be verified to estimate a false positive rate (Marques et al. 2009). A sys-
tematic-random sample can be taken instead, where even spacing occurs between 
samples and a random starting detection is selected, to ensure both a representa-
tive and random sample, e.g., every 100th detection starting at the 32nd detec-
tion. After automated or manual detection, calls are matched across sensors, lead-
ing to a capture history similar to that illustrated in Table 1.

Calls detected on multiple sensors are localized using the call’s azimuths from 
the sensors (Fig.  1). Pomerleau et  al. (2011) showed that the mean dive depth 
of bowhead whales does not exceed 100 m. As the difference between this and 
the sensor depth is much smaller than the distance that bowhead whales can be 
detected from (e.g., Thode et al. 2020), we ignore depth and use horizontal space 
in the following (Barlow and Taylor 2005). For these localized calls, the dis-
tance to the detecting sensors can be determined (Table 2). This process naturally 
results in that only those calls that are easier to detect at greater distances can be 

Table 1  Capture history of 
detections at sensors A–G based 
on the example from Fig. 1

As we do not detect the objects themselves in a real scenario but 
only the sounds they produce, we only observe the Call column 
and the columns to the right of it and row entries that are italic. 1: 
detected, 0: not detected. Total: number of sensors on which each 
call (row) is detected

Object Call A B C D E F G Total

W1 C1 0 0 0 0 0 0 0 0
W2 C2 0 0 0 0 1 1 1 3
S1 C3 0 0 0 0 0 1 0 1
W3 – 0 0 0 0 0 0 0 0
W4 C4 0 1 0 0 0 0 0 1
W5 C5 1 0 1 0 0 0 0 2
S2 C6 0 0 0 0 1 0 1 2

Table 2  Distances (in km) 
between localized calls and 
sensors A–G, following the 
example from Fig. 1 and the 
capture history in Table 1

Total: number of distances that can be used for a DS analysis

Object Call A B C D E F G Total

W1 C1 – – – – – – – 0
W2 C2 – – – – 21.3 15.1 17.7 3
S1 C3 – – – – – – – 0
W3 – – – – – – – – 0
W4 C4 – – – – – – – 0
W5 C5 11.2 – 10.5 – – – – 2
S2 C6 – – – – 12.6 – 11.1 2
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localized. Consider, e.g., a call produced 4 km south of sensor A. Even though 
this call may be close enough to sensor A to be detected with high probability, in 
order for it to be localized, it has to be detected by at least one more sensor, e.g., 
B or C at 9.6 km or 11 km distance to the call, respectively.

In this hypothetical example, the data used for SECR analyses would be the cap-
ture histories from Table 1, while the data used for DS analyses would be the dis-
tances from Table 2. Although for PS we do not use distances for model fitting, we 
use these distances to limit the analyses to counts of calls within a defined search 
radius. Calls only detected by one sensor cannot be localized; they therefore lack 
distance estimates and are not included in the PS or DS analyses. We refer to these 
single-detector calls as “singletons” in the following. SECR is the only method that 
includes singletons in the analysis.

2.1  Analyses methods and assumptions

Here we summarize the formulas and assumptions for the three density estimation 
methods in the context of PAM. More complete descriptions of these methods in 
the context of PAM can be found in Marques et al. (2013) and, in general, for PS 
in Borchers et al. (2002), for DS in Buckland et al. (2015) and for SECR in Borch-
ers and Efford (2008) and Borchers (2012). Using the notation from the four steps 
above, i.e., the n , f  and p, the estimator for call density Dc in its most basic form is 
(Marques et al. 2013):

where A is the total search area covered by K sensors and T is the duration of the 
recording. While K and T  are the same for PS, DS and SECR, each method defines 
Dc, n , f , A and p differently. Hence, we use subscript notation for these quantities in 
the following.

The average detection probability p within the search area is generally modelled 
using two main components: the absolute detection probability at zero distance from 
the sensor g0 , which is the probability that a call made at zero horizontal distance 
from the sensor is detected by the sensor, and a detection function g(y) that describes 
the decay in detection probabilities with increasing distance y from the sensor rel-
ative to g0 . Depending on the method, either component is assumed or estimated 
from the data where applicable (see below). A frequently used detection function is 
the half-normal:

Equation  (2) contains one parameter, the scale parameter σ, which needs to be 
estimated. Note that g(y = 0) = 1. Larger σ values yield detection functions with 

(1)D̂c =
n(1 − f̂ )

Ap̂T
,

(2)g(y) = exp

(

−
y2

2𝜎2

)

, 𝜎 > 0.
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high detection probabilities out to larger distances. In the following we use these 
components, g0 and g(y) , to compare p for the three different methods.

2.1.1  Plot Sampling (PS) for PAM data

PS is the simplest of the three estimation methods, but places the most demands 
on the PAM localization capability. PS limits the search area APS to the K circles 
with radius wPS around the sensors, each circle with area aPS , and includes only 
the calls localized within aPS . Here, nPS is the sum of the number of detections 
within radius wPS around each sensor, counting any duplicates of a given call 
caused by overlapping circles twice. The total search area APS equals KaPS.

PS assumes that all calls produced within the individual aPS are detected 
with certainty. To meet this assumption, the search area is typically limited to a 
relatively small radius wPS . We can therefore assume that g0PS = 1 and pPS = 1 . 
Hence, this method does not require estimating a detection function, at the cost 
of rejecting large numbers of detections that originate outside wPS . As we need 
to determine which calls originated from within wPS , a successful PS applica-
tion requires that all calls produced within wPS around any sensor are localized—
hence, the required sensor spacing described above. Further assumptions are 
listed in Table 3.

The false positive rate fPS for calls within wPS is defined as the proportion of all 
sounds localized within wPS around the sensors that were falsely identified as calls 
of interest. It can be estimated as described above in Sect. 2, limiting the representa-
tive sample to calls localized within wPS.

2.1.2  Distance sampling (DS) for PAM data

Here, each sensor represents a point in a point transect survey, which is a form of 
DS (e.g., Buckland et  al. 2001, chapter  5; Buckland 2006). In comparison to PS, 
we expand the search radius from wPS to a larger radius, wDS and include all nDS 
call detections within aDS (the circular area around a sensor with radius wDS ) from 
each of the K sensors. Like PS, DS assumes that all calls at (or near) the sensor are 
detected with certainty, i.e.: g0DS = 1. However, we no longer assume that all calls 
within the area aDS around each sensor are detected with certainty. Instead, we fit a 
detection function gDS(y) to the distances between the sensors and the detected calls 
(e.g., as in Table 2) and use it to estimate the average detection probability within 
aDS:

An estimate of pDS can be obtained using Eq.  (3), replacing gDS(y) with ĝDS(y) 
(Buckland et al. 2015). One sees that PS is a limiting case of DS when the search 
radius wDS is shrunken to values small enough that pDS becomes 1. Similar to PS, 
nDS refers to the sum of the number of detections that fall within the search areas aDS 

(3)pDS =
2

wDS
2∫

wDS

0

ygDS(y)dy.



 Environmental and Ecological Statistics

1 3

Ta
bl

e 
3 

 S
um

m
ar

y 
of

 a
ss

um
pt

io
ns

 a
nd

 th
ei

r i
m

po
rta

nc
e 

fo
r P

S,
 D

S 
an

d 
SE

C
R

 in
 th

e 
PA

M
 c

on
te

xt
 (b

as
ed

 o
n 

B
uc

kl
an

d 
et

 a
l. 

20
01

; B
uc

kl
an

d 
20

06
; B

or
ch

er
s 

an
d 

Eff
or

d 
20

08
; M

ar
qu

es
 e

t a
l. 

20
13

; T
ho

m
as

 a
nd

 M
ar

qu
es

 2
01

2)

W
e 

no
te

 th
at

 a
dd

iti
on

al
 m

et
ho

ds
 n

ot
 c

on
si

de
re

d 
he

re
 a

re
 a

va
ila

bl
e 

to
 a

cc
om

m
od

at
e 

vi
ol

at
io

ns
 o

f s
om

e 
of

 th
es

e 
as

su
m

pt
io

ns
 fo

r t
he

 re
sp

ec
tiv

e 
m

et
ho

ds

#
A

ss
um

pt
io

n
D

es
cr

ip
tio

n
PS

D
S

SE
C

R

1
A

de
qu

at
e 

su
rv

ey
 d

es
ig

n 
re

pr
e-

se
nt

at
iv

e 
of

 st
ud

y 
ar

ea
Pl

ac
em

en
t o

f a
n 

ad
eq

ua
te

 n
um

be
r 

of
 se

ns
or

s a
cc

or
di

ng
 to

 a
 (s

ys
-

te
m

at
ic

-)
ra

nd
om

 d
es

ig
n

H
ig

hl
y 

im
po

rta
nt

H
ig

hl
y 

im
po

rta
nt

H
ig

hl
y 

im
po

rta
nt

2
N

o 
un

-m
od

el
le

d 
he

te
ro

ge
ne

ity
 in

 
de

te
ct

io
n 

pr
ob

ab
ili

tie
s

D
et

ec
tio

n 
pr

ob
ab

ili
tie

s o
nl

y 
de

pe
nd

 o
n 

di
st

an
ce

 to
 th

e 
se

ns
or

N
ot

 im
po

rta
nt

 a
s l

on
g 

as
 p

P
S
=
1

N
ot

 im
po

rta
nt

 if
 m

od
er

at
e 

he
te

ro
-

ge
ne

ity
H

ig
hl

y 
im

po
rta

nt

3
g
0
 =

 1
D

et
ec

tio
n 

pr
ob

ab
ili

ty
 a

t/v
er

y 
ne

ar
 

th
e 

se
ns

or
 e

qu
al

s 1
H

ig
hl

y 
im

po
rta

nt
H

ig
hl

y 
im

po
rta

nt
N

ot
 re

qu
ire

d 
as

 it
 is

 
es

tim
at

ed
 fr

om
 th

e 
da

ta
4

Th
e 

fa
ls

e 
po

si
tiv

e 
ra

te
 is

 e
sti

m
at

ed
 

ac
cu

ra
te

ly
f̂
 in

 E
q.

 (1
) a

cc
ou

nt
s f

or
 a

ll 
fa

ls
e 

po
si

tiv
es

 in
 n

H
ig

hl
y 

im
po

rta
nt

H
ig

hl
y 

im
po

rta
nt

H
ig

hl
y 

im
po

rta
nt

5
N

o 
m

is
-a

ss
oc

ia
tio

ns
 o

f c
al

ls
 

ac
ro

ss
 se

ns
or

s
D

et
ec

tio
ns

 o
f t

he
 sa

m
e 

ca
ll 

ar
e 

no
t f

al
se

ly
 id

en
tifi

ed
 a

s s
ep

ar
at

e 
ca

lls

Pr
ob

le
m

at
ic

 if
 th

is
 le

ad
s t

o 
si

ng
le

to
ns

 w
ith

in
 K
a
P
S
 o

r t
o 

an
 

in
fla

te
d 
n
P
S

Pr
ob

le
m

at
ic

 if
 th

is
 le

ad
s t

o 
si

ng
le

-
to

ns
 o

n/
ne

ar
 a

ny
 o

f t
he

 se
ns

or
s 

or
 to

 a
n 

in
fla

te
d 
n
D
S

H
ig

hl
y 

im
po

rta
nt

6
N

o 
lu

m
pi

ng
 o

f c
al

ls
C

al
ls

 d
et

ec
te

d 
on

 d
iff

er
en

t s
en

so
rs

 
ar

e 
no

t f
al

se
ly

 id
en

tifi
ed

 a
s t

he
 

sa
m

e 
ca

ll

Pr
ob

le
m

at
ic

 if
 th

is
 le

ad
s t

o 
ne

ga
-

tiv
el

y 
bi

as
ed

 n
P
S

Pr
ob

le
m

at
ic

 if
 th

is
 le

ad
s t

o 
ne

ga
-

tiv
el

y 
bi

as
ed

 n
D
S

H
ig

hl
y 

im
po

rta
nt

7
In

de
pe

nd
en

t d
et

ec
tio

n 
of

 c
al

ls
 

ac
ro

ss
 se

ns
or

s
Th

e 
pr

ob
ab

ili
ty

 o
f d

et
ec

tin
g 

a 
ca

ll 
on

 o
ne

 se
ns

or
 d

oe
s n

ot
 a

ffe
ct

 
th

e 
pr

ob
ab

ili
ty

 o
f d

et
ec

tin
g 

it 
on

 
ot

he
r s

en
so

rs

N
ot

 im
po

rta
nt

Ro
bu

st 
to

 v
io

la
tio

n
H

ig
hl

y 
im

po
rta

nt

8
A

cc
ur

at
e 

di
st

an
ce

s b
et

w
ee

n 
se

n-
so

rs
 a

nd
 c

al
ls

D
ist

an
ce

s b
et

w
ee

n 
se

ns
or

s a
nd

 
ca

lls
 a

re
 m

ea
su

re
d 

ac
cu

ra
te

ly
Im

po
rta

nt
 to

 o
bt

ai
n 

ac
cu

ra
te

 n
P
S

Im
po

rta
nt

. M
in

or
 e

rr
or

s c
an

 b
e 

al
le

vi
at

ed
 b

y 
us

in
g 

bi
nn

ed
 

di
st

an
ce

s f
or

 m
od

el
 fi

tti
ng

D
oe

s n
ot

 a
pp

ly



1 3

Environmental and Ecological Statistics 

of the K sensors, and any call that falls within overlapping search areas is counted 
towards nDS for each time it was detected by a sensor along with the distance to the 
respective sensor. While this may seem to artificially inflate nDS , the reasoning again 
arises from the requirement that the total search area ADS is KaDS , i.e., no subtraction 
of any overlapping areas occurs.

Multiplication of the search area aDS around a sensor with pDS yields a quan-
tity called the effective area �DS = aDSpDS , which is the area around a sensor within 
which as many calls were missed as were detected outside. It can also be expressed 
in terms of the detection function (Buckland et al. 2015):

An estimate of the effective area, �̂DS can be obtained using Eq.  (4), replacing 
gDS(y) with ĝDS(y) . We can substitute K�̂DS for Ap̂ in Eq.  (1) for estimating call 
densities.

Another critical assumption for DS is that distances between the sensor and the 
calls are measured accurately, just like for PS. Uncertainty in localizations and, 
hence, in the distances, leads to bias in p̂DS and the estimated call densities (e.g., 
Borchers et al. 2010). The influence of minor random distance errors can be allevi-
ated by fitting the detection function to binned distances, where the bin width is 
set to equal the distance error (Buckland et  al. 2015). As only localized calls are 
included in fitting the detection function (as opposed to any detected call), the detec-
tion function describes the probability of localizing a call with increasing distance 
from the sensor (as opposed to the probability of detecting a call). It follows that the 
detection function gDS(y) in the PAM context considered here is a “localization func-
tion” rather than a detection function. Generally, we expect gDS(y) to decrease with 
increasing distance from the sensor and, although singletons are not localized, an 
increasing proportion of singletons with increasing distance from the sensor. Further 
assumptions are listed in Table 3.

The false positive rate fDS for calls within wDS is estimated as the proportion of all 
sounds localized within wDS around the sensors that were falsely identified as calls 
of interest. It can be estimated as described above in Sect. 2, limiting the representa-
tive sample to calls localized within wDS.

2.1.3  Spatially explicit capture‑recapture (SECR) for PAM data

For SECR we estimate the probability g0SECR of detecting a call at distance zero as well 
as the detection function gSECR(y) from the capture histories of the calls (e.g., Borch-
ers and Efford 2008; Borchers 2012). Hence, in comparison to PS or DS, we are not 
required to assume that all calls at/near the sensor are detected and we do not require 
call distances or locations. Furthermore, the data are not truncated by a search radius, 
i.e., wSECR = Inf  . All detected calls, along with their detection histories, are included in 
the analysis, regardless of the number of sensors they were detected on. Theoretically, 
with wSECR = Inf  , the total search area ASECR = Inf  and pSECR approaches zero. Hence, 
in practice, we use a different approach where the search area aSECR around each sensor 

(4)�DS = 2�∫
wDS

0

ygDS(y)dy.
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only extends out to a defined distance wSECR beyond which it is safe to assume that no 
calls can be detected (Efford 2019). Nonetheless, we do not estimate an average detec-
tion probability within aSECR . Instead, we use estimates of g0SECR and gSECR(y) to obtain 
an estimate of the effective area �SECR . As for DS, it is estimated using a combination of 
the search area and the detection probabilities. However, in contrast to DS, the effective 
area �SECR is defined as the whole area surrounding the K sensors within which as many 
calls were missed as were detected beyond. It is estimated using the following steps 
(e.g., Stevenson et al. 2015). First we estimate the probability pk(X) that a call produced 
at location X (this location is unobserved) is detected by the kth sensor using:

where yX is the distance between X and the kth sensor. The probability p.(X) that the 
call was detected on at least one sensor becomes:

The effective area is obtained by integrating p.(X) over ASECR . In practice this is 
done by dividing ASECR into I grid cells, each with size ai , where the Xi represent the 
center points of the grid cells:

The estimate �̂SECR obtained using Eq. (7) replaces Ap̂ from Eq. (1) for estimating 
call density with SECR. Also in contrast to PS or DS, nSECR refers to the total number 
of unique calls included in the analyses for SECR and each call contributes to nSECR 
only once, regardless of how many sensors detected it (as opposed to nPS or nDS which 
refer to the number of detections for PS and DS, respectively).

This method assumes that calls are matched reliably across sensors, detections are 
made independently between sensors, no un-modelled heterogeneity in detection prob-
abilities exists (i.e., the call detection function depends only on the distance to the sen-
sor, or other appropriate covariates are included in the detection function model, e.g., 
Singh et al. 2014). Further assumptions are listed in Table 3. The assumption of inde-
pendent detections between sensors, which emerges as a key factor in this study, means 
that the detection of a call on one sensor does not influence the probability of detecting 
a call on another sensor.

The false positive rate fSECR is estimated as the proportion of all calls detected on 
any sensor that were falsely identified as calls. In general, we expect the false positive 
rate to be higher for SECR compared to PS and DS, because the SECR analysis incor-
porates all call detections including singletons, and not just localized calls. In compari-
son, for PS and DS both the truncation and the inclusion of localized calls only, poten-
tially eliminate a lot of false detections from the analysis.

(5)pk(X) = g0SECRgSECR
(

yX
)

,

(6)p.(X) = 1 −
∏K

k=1

[

1 − pk(X)
]

,

(7)�SECR =
∑I

i=1
p.
(

Xi

)

ai.
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3  Simulation study

3.1  Methods

We developed a simulation tool to investigate the effect of violating the assump-
tions from Table  3 on call density estimates from PAM data using PS, DS and 
SECR. The full description of the tool is given in Appendix 1; here we summa-
rize the key findings. The simulation results allowed us to understand and diag-
nose the causes for potential discrepancies in the results between methods in the 
bowhead whale data.

Each simulation consisted of 1,000 iterations. For each iteration we generated 
random call detections in a first step, using the same sensor configuration as shown 
in Fig. 1 and a known number Nsim = 10,000 calls produced at known locations over 
a fixed recording time T throughout a defined study area; hence, call density Dsim 
was known. These calls were detected by each sensor with probability g0simgsim(y) , 
with known g0sim and using a half-normal key function (Eq.  (2)) for gsim(y) with 
known scale parameter �sim . Any call detected on multiple sensors was considered as 
matched correctly between sensors. In a second stage, we analyzed the call detection 
data using each of the three methods. We first tested the methods performed if all of 
the assumptions from Table 3 were met in a baseline simulation. We then expanded 
these tests to scenarios where one of the assumptions from Table 3 was violated. To 
identify potential biases, we used the following diagnostics:

a. Comparisons of estimated call density with true call density Dsim;
b. Comparisons of the estimated with true probabilities of detection (DS and SECR 

only) using visual tools—the detection function plot as shown in Fig. 2—and 
comparisons of g0 (SECR only) and σ estimated with the respective method vs 
the true values g0sim and �sim;

c. Plotting proportions of calls detected by one, two, three, etc. sensors (defined here 
as proportion plots) as shown in Fig. 2. Following the hypothetical example, these 

 Detec�on func�ons Propor�on plot Es�mate 
of 

Bias 
PS 

Bias 
DS 

Bias 
SECR

Baseline 
simula�on 

Fig. 2  Results from the baseline simulation. Red, scaled histogram of distances (km) to calls detected 
by two or more sensors within wDS = 30 km, overlain with the true (black line) and estimated DS (blue 
line) and SECR (purple line) detection functions. Green proportion plot depicting the proportion of 
calls detected by 1–7 sensors. Color code for median-biases in the estimates as a percentage:  none 
to minor negative or positive bias of < 10%; positive biases:  ≥ 10%; ≥ 20%;  ≥ 50%; negative 
biases:  ≥ 10%; ≥ 20%; ≥ 50%;  NA. Numerical results are given in Appendix 1
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were produced using the total number of detections for each call (i.e., as presented 
in the Total column from Table 1).

Note that for both a. and b. we estimated bias with respect to the median of the 
1000 estimates, and not the mean, because the non-linear transformations created by 
the use of the detection function generated long tails in the distribution that dispro-
portionately impacted the mean (McHugh 2003).

3.2  Baseline simulation

For the baseline simulation, we ensured that all of the assumptions from Table  3 
were met. As the acoustic sensors (Fig. 1) were not randomly placed throughout the 
entire study area (thus violating assumption 1: adequate survey design representa-
tive of the entire study area), we randomly distributed calls using a uniform distribu-
tion in the simulation in order to preserve the assumption.

Average biases were minor for the call density estimates for each of the three 
methods, as well as for the parameters pertaining to detection probabilities obtained 
with SECR ( �sim and g0sim ) (Fig. 2). The estimates of the DS scale parameter were 
negatively biased and the DS detection function declined more quickly with increas-
ing distance than the true or SECR detection functions; however, as the estimated 
DS detection function actually represented a localization function where each call 
needed to be detected by two or more sensors, this bias was expected. The fact that 
gDS(y) fitted better to the histogram of distances than gSECR(y) was caused by the 
increasing number of singletons with increasing distance which were not included in 
the histogram. Hence, although the DS detection function was negatively biased, the 
missing singletons meant that, overall, the DS detection function fitted the distances 
to the measured distances well and estimated call densities only had minor biases 
(Fig. 2).

The proportion plots consistently revealed the pattern shown in Fig.  2 i.e., the 
largest proportion of calls (~ 0.42) detected on only one sensor and decreasing pro-
portions towards the maximum possible number of sensors.

3.3  Simulating Violations of Underlying Assumptions

We ran eight simulations of 1,000 iterations each, where in a given simulation one of 
the eight assumptions listed in Table 3 was violated. Appendix 1 details how these 
violations were modelled. Almost every violation introduced various biases. Inad-
equate survey design caused strong bias in call density estimates for each method 

Fig. 3  Results from simulation where one assumption from Table 3 was violated. Red: scaled histogram 
of distances (km) to calls detected by two or more sensors, overlain with the true (black line) and esti-
mated DS (blue line) and SECR (purple line) detection functions. Green proportion plot depicting the 
proportion of calls detected by 1–7 sensors. Color code for median biases in the estimates as a percent-
age:  none to minor negative or positive bias of < 10%; positive biases: ≥ 10%;  ≥ 20%;  ≥ 
50%; negative biases:  ≥ 10%;  ≥ 20%; ≥ 50%;  NA. Numerical results of biases are given in 
Appendix 1

▸
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(row 1, Fig.  3). Un-modelled heterogeneity in detection probabilities (row 2) and 
inaccurate estimates of the false positive rate (row 4) only caused severe biases in 
call densities estimated with SECR; mis-associations (row 5) and lumping of calls 
(row 6) also caused larger biases for SECR compared to PS and DS. Setting g0<1 
(row 3) and introducing distance errors (row 8), on the other hand, only caused 
biases for PS and DS estimates. However, violation of the independence assump-
tion (row 7) lead to the largest discrepancies from the baseline, both in terms of the 
SECR detection function—which was nearly horizontal within the 30 km displayed 
in Fig. 3—and the proportion plot. This was the only scenario in which the pattern 
differed from the decreasing proportions with the increasing number of sensors from 
the baseline simulation in Fig. 2.

4  Case study

4.1  Data description

Greeneridge Sciences, commissioned by SEPCO, collected acoustic data in the 
Beaufort Sea during 2007–2014 to monitor potential effects of oil exploration on 
bowhead whales. Data were collected using DASARs (Directional Autonomous 
Seafloor Acoustic Recorders), whose directional capability allowed localization 
of calls through triangulation (Greene et al. 2004). Each year during the bowhead 
whale migration westward through the Beaufort Sea (e.g., Harwood et al. 2017), up 
to a total of 40 DASARs were deployed at five sites (Fig. 4) in July or August and 
retrieved in September or October, obtaining continuous acoustic recordings. The 
geometry of the normal configuration at each site was seven DASARs arranged in a 
triangular grid with 7 km spacing between sensors (Figs. 1, 5), although some sites 
had as few as three and as many as 13 sensors during some years (Appendix 2).

The recordings were analyzed for whale calls using both manual detection by 
observers and an automated detector (Blackwell et  al. 2013, 2015), although the 
manual analysis was only performed on a subset of the monitoring period. In this 
paper we restricted the analyses to the manually detected calls, under the assumption 

Fig. 4  Study area and DASARs in their normal configuration at sites 1–5 shown in red, land shown in 
green, depth contour lines in grey (100 m, 500 m, 1000 m and 2000 m)
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that the false positive rate should be nearly zero; hence, we were able to set the false 
positive rate for each of the methods, fPS , fDS and fSECR , to zero. The dataset of auto-
mated call detections had much higher fractions of singletons and we suspected that 
these singletons contained a large proportion of false positives, making them unsuit-
able for SECR analysis.

Manual detection involved observers visually inspecting 1-min spectrograms 
from all DASARs at a site simultaneously on a single screen. When a call was 
detected, the observer examined each spectrogram individually to mark the time and 
frequency range of the call on each DASAR on which it was visible. These detec-
tions generated the call detection histories (similar in format to Table 1) used in the 
SECR analyses. For a call detected on at least two DASARs, we used the estimated 
angles between the call and the DASARs to triangulate the location of the source 
(Thode et al. 2012). As there was some uncertainty in the angles, there was uncer-
tainty about the localization. For those calls that could be localized, we calculated 
the distances between the call and each of the DASARs that detected the call (simi-
lar in format to Table 2).

In 2007 the entire season was inspected manually, whereas in 2008–2012 and 
2014, 5–9 full days (midnight to midnight) spread throughout the season in the 
respective year were inspected. The chosen days were judged to be representative of 
the varying levels of natural and anthropogenic noise each year, as well as the vary-
ing numbers of whale calls detected. In 2013 all data from six selected days were 
inspected for sites 1 and 2, but due to the huge numbers of whale calls detected, 
a modified inspection regimen was adopted for sites 3, 4, and 5. Each hour of a 

Fig. 5  Bowhead whale call density (number of calls/km2/day) in 2007–2014 for each site estimated with 
PS (light blue), DS (dark blue), and SECR (purple); horizontal lines represent the estimates, vertical 
lines the 95% CIs. Bottom right plot displays the three focal site-year combinations
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day was divided into four quarters, each 15 min in duration, and only the first and 
third quarters were inspected. For sites 3 and 5, this resulted in 50% of each of the 
six days being inspected. For site 4, the new protocol was applied after the manual 
inspection for that site had begun, so some hours were inspected at 50%, some at 
75%, and some at 100%. In 2010 only two DASARs were deployed at site 2 which 
could also not be calibrated due to too much ice at the site. Hence, we excluded data 
from site 2 in 2010 from the analyses.

4.2  Analysis

We estimated call densities using the manually detected bowhead whale call data 
with the three density estimation methods using functions from the R libraries 
Distance (Miller 2017; Miller et al. 2019) and secr (Efford 2019). For PS and DS, 
data were truncated at wPS = 4 km and wDS = 30 km, respectively. Previous work 
(Blackwell et al. 2015; Thode et al. 2020) concluded that 80% of all whale calls are 
detected within 3.5 km radius of a sensor, regardless of their source level (how loud 
they were). We assumed that no calls could be detected from beyond 200 km and, 
hence, set wSECR = 200 km. For DS and SECR we fitted one-parameter half-normal 
detection functions (Eq. (2)) without modelling potential heterogeneity in detection 
probabilities, i.e., detection probabilities were assumed to depend only on the dis-
tance to the sensor, but not on other factors. For DS, distances were binned into ten 
bins of 3 km each to mediate potential biases due to distance errors. Separate analy-
ses were conducted for each site and each year with the exception of site 2 in 2010, 
which had insufficient data, yielding 39 different site-year combinations.

For PS, no detection function was fitted; therefore, estimates of uncertainty (95% 
confidence intervals (CIs)) represent only variance due to encounter rate. This was 
estimated using the P3 estimator from Fewster et al. (2009), which is the standard 
encounter rate variance estimator and the default method of the Distance::ds func-
tion for DS point transect analyses (Miller 2017). For DS, the uncertainty from the 
detection function, estimated using the Distance::ds function, also contributed to 
the estimate of the uncertainty of call density and both components were combined 
using the delta method (Buckland et al. 2001, p. 76). Log-normal confidence inter-
vals for call density were produced for PS and DS using methods described in Buck-
land et al. (2001, pp. 77–78) which take into account the small number of samplers 
(DASARs). For SECR, density in general or call density in the PAM context is one 
of the model parameters and, hence, asymptotic estimates of uncertainty are based 
on the inverse of the information matrix from maximizing the unconditional likeli-
hood and are reported as outputs by the secr function of the secr R library (Borchers 
and Efford 2008).

We used the same assessments for comparing results of the three methods as 
for the baseline simulation, except that here true values were unknown and esti-
mates could only be compared between the three methods. In the following, we 
focus on three representative site-year combinations (denoted by, e.g., S107 for site 
1 in 2007), but full comparisons for all 39 site-year combinations are included in 
Appendix 2.
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4.3  Results

The analyzed dataset included a total of 444 recording days and 686,192 calls across 
all sites and years combined (Table 4). The number of calls and number of detec-
tions included in the analyses varied between methods due to different truncation 
distances. Sample sizes were large even when broken down into site-year specific 
counts and truncated at 4 km for PS. For any given site-year combination, the com-
putational time for fitting models was longest for SECR and shortest for PS due to 
inherent methods and different sample sizes included in the analyses (Table 4 and 
Appendix 2). To fit models, for example, to data from S107 on an Intel(R) Core(TM) 
i7 processor with 2.60 GHz CPU and 16.0 GB RAM took 6 s, 22 s and 6 min 47 s 
for PS, DS and SECR, respectively.

Estimated call densities per site and year were generally similar for PS and DS—
although slightly higher for PS compared to DS—but typically much lower for 
SECR (Fig. 5). The latter were on average more than 60 times lower than PS esti-
mates across all site-year combinations and, on average, more than 50 times lower 
than DS estimates. These discrepancies between SECR estimates and PS or DS 
estimates were unexpected, as the analyses were based on the same detection data. 
Even though singletons were included only for SECR, we expected that estimated 
detection probabilities should be slightly smaller for DS and, hence, correct for the 
reduced number of detections, yielding similar call density estimates.

Uncertainty in the estimated call densities was generally  the largest for PS and 
lowest for SECR (Fig. 5). Often CIs were too narrow, particularly for SECR, to be 
visible in Fig. 5 on the scale required for the comparison between the three methods. 
95% CIs were wider for PS than for DS due to the larger encounter rate variances 
for PS. They always overlapped for DS and PS while only in very few cases did they 
overlap between PS and SECR or DS and SECR (e.g., S107, S108, S213).

The three specific site-year combinations that we focus on in the following to 
investigate these discrepancies in call density estimates were sites 1 and 3 in 2007 
and site 3 in 2009. This selection included one case (S107) where observed patterns 
were similar to the baseline simulation in Fig. 2 and two cases (S307 and S309) that 
showed substantially divergent patterns. For S307 and S309, call density estimates 
were much smaller for SECR compared to PS and DS (Figs. 4, 5), while for S107 
the SECR estimate was lower but within the 95% CIs of PS and DS. The comparison 

Table 4  Number of DASAR deployments (DASARs) at the sites, recording times (in days), number of 
calls and number of detections included in the respective analyses across all years or site-year-specific for 
the three examples

PS DS SECR

Site Year DASARs Days Calls Detections Calls Detections Calls Detections

1–5 2007–14 278 444 171,252 185,010 470,594 2,151,254 686,192 3,091,842
1 2007 5 49 5216 5696 8034 23,376 13,017 29,603
3 2007 7 46 9467 10,076 22,625 97,613 32,473 130,071
3 2009 7 8 1654 1807 6082 30,527 9634 50,244
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of the DS and SECR detection functions for S107 looked as expected, i.e., similar 
to Fig. 2 where the SECR detection function was slightly wider and �̂SECR slightly 
larger than �̂DS (Fig.  6). For S307 and S309, the pattern was different in that the 
SECR detection functions were unreasonably flat—unreasonable because we do 
not expect to detect bowhead whale calls at 30 km with probability ~ 0.9 (Thode 
et al. 2020)—and estimates of �SECR were extremely large. The proportion plot for 
S107 (Fig. 6) showed decreasing proportions with increasing sensors, while for the 
other two site-years this pattern was reversed (S309) and the majority of calls were 
detected on all DASARs, or proportions were similar across number of DASARs 
(S307).

4.4  Comparison with simulation study

Results from our case study revealed the following discrepancies between call den-
sity estimation methods for most site-year combinations:

1. SECR call density estimates were much lower than PS or DS density estimates;
2. SECR detection functions yielded estimated detection probabilities that were 

unreasonably large out to large distances;
3. Nearly equal or increasing proportions of calls detected with increasing num-

bers of DASARs.
4. Slightly higher call density estimates for PS compared to DS.

Fig. 6  Results from analyzing the bowhead whale data including estimates and 95% CIs of call density 
Dc , and parameters g0 and σ estimated with the three methods for three example sites.  indicates NA. 
Red, scaled histogram of distances (km) to calls detected by two or more sensors, overlain with the esti-
mated DS (blue line) and SECR (purple line) detection functions. Green proportion plots depicting the 
proportion of calls detected by 1–7 sensors
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Of these, we consider the first three to be major discrepancies. The simulations 
conducted determined that the only scenario that recreated the same three major dis-
crepancies was one that modelled non-independent detections across sensors. Only 
then did the simulation results for SECR show strong negative biases in call den-
sity, strong positive biases in the scale parameter estimates and a very wide detec-
tion function. This was also the only violation that caused the highest proportion 
of detected calls to be in the all-sensor category (Fig. 3, row 7), while for all other 
violations, the highest proportion of detected calls was in the single sensor category 
(similar to the pattern revealed by the baseline simulation in Fig. 2). The simulation 
results also revealed that PS estimates were unaffected by non-independence viola-
tions and DS estimates were slightly positively biased by it.

The only simulated scenario for which PS estimates were higher than DS esti-
mates, the fourth, minor discrepancy listed above, was when error in the distance 
measurement was introduced. These results confirmed our suspicion that measure-
ment error existed in the case study due to call localization uncertainties.

5  Discussion

5.1  How non‑independence of detections affects SECR

We believe the non-independent detections originated from the manual detec-
tion process during which observers visually scanned 1-min spectrograms of all 
DASARs at a given site simultaneously and logged each detected call on each chan-
nel. It is likely that a detection made on one DASAR cued the observer into search-
ing for the same call on the other DASARs and, hence, artificially increased the 
detection probabilities for this call on the other DASARs. Proportion plots proved to 
be a key tool for revealing the non-independence issue. As a result, many more calls 
than expected were detected on more than one DASAR (Fig. 6 and Appendix 2). In 
18 cases of the 39 site-year combinations analyzed, the highest proportion of calls 

Fig. 7  Proportion plots of the bowhead whale detections for all sites-years with normal DASAR configu-
ration combined: a for the manually detected calls and b for the automatically detected calls (singletons 
not shown, see text)
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were detected on all DASARs (Appendix 2). Only in two manually-analyzed cases 
was the highest proportion on one DASAR, which is the pattern expected from a 
fully independent detection process.

Additional evidence that the manual detection process caused the non-independ-
ence between detections was provided by the following observation: the proportion 
plots for the automatically and manually detected data were very different from each 
other (Fig. 7). In fact, the automatic detections showed the distribution we would 
expect, i.e., decreasing proportions with the increasing number of DASARs (Thode 
et al. 2012). Singletons are not shown in Fig. 7 for the automatic detections because 
they dominated the proportion of detected calls. Because standard formulations of 
SECR rely on the presence of accurate counts of singletons, applying SECR analysis 
to the automated results would have required either improving the automated algo-
rithm or developing an SECR estimator that requires calls to be detected by at least 
two sensors instead of at least one.

We suspect that modifications to the manual analysis protocol could reduce the 
dependence between detections on different DASARs. One simple but very labor-
intensive option would have observers scanning the spectrograms for each DASAR 
separately in a first round, marking the detected calls and, in a second round, match-
ing the marked calls across sensors. Here it would be essential that during the sec-
ond round, observers would not add any new detections as a result of referring to 
detections made during the first round, which would increase the probability of 
detection for these new detections in the second round. This second round matching 
could also be done automatically using a customized algorithm (Thode et al. 2012).

Possible ways for dealing with non-independence in the data for SECR, which 
could be considered in future studies, include developing a new estimator which 
accommodates non-independent detections (e.g., Stevenson et al. unpublished data). 
Non-independence can be alleviated if the process that caused independence can be 
incorporated in the model. For our case study, this may be as simple as including a 
covariate in the SECR detection model indicating which sensor the call was detected 
on first by the observer. Here, we would expect that the detection function would 
drop off relatively quickly for call-sensor combinations detected first by the observ-
ers and be much flatter for the remaining call-sensor combinations. This information 
was not available for our case study.

5.2  Relationships between PS and DS

Another interesting feature in our case study was that call density estimates were 
consistently slightly higher for PS compared to DS. For our simulation, this pattern 
was generally the opposite, i.e., slightly higher density estimates for DS compared 
to PS (Fig. 3). The only simulated scenario where PS density estimates were higher 
compared to DS estimates was when errors in the observed distances were intro-
duced. Bochers et  al. (2010) showed that random error in distance measurements 
causes positive biases in DS estimates, more so for point transects compared to line 
transects. In a sense, the issue is comparable to biases caused by random movement 
of animals before detection where animals are not detected at their original snapshot 
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location but at some distance from it. Glennie et  al. (2015) showed that for most 
animal speeds, the movement of animals causes larger biases for strip transects (a 
type of PS) than for line transects (a type of DS). Hence, we assume that for our 
case study, the higher estimates for PS compared to DS may have been caused by 
the uncertainty in localization and the resulting random error in distance measure-
ments. This casts doubt on whether the use of binned distances for the DS analyses 
was sufficient to mediate any potential issues. Further simulations would be needed 
to determine the exact amount of bias in call densities for each of the three methods.

5.3  Estimated vs assumed detection probability at or near the DASAR

Lastly, we note that ĝ0SECR = 1 was not considered sufficient proof that the assump-
tions of g0PS = 1 or g0DS = 1 were met as the latter two require certain detection 
by at least one more DASAR for localization. However, we assumed that a viola-
tion of this assumption would yield smaller call density estimates for PS and DS in 
comparison to SECR. Further research will be conducted to investigate this using 
a mark-recapture DS (MRDS, Borchers 2012) approach where g0MRDS is estimated 
for each DASAR individually using the detections of the other DASARs at the same 
site as trials (Oedekoven et al., unpublished data). For S307, for example, g0MRDS of 
DASAR A is estimated using the detections made by the other DASARs at S307, 
i.e., DASARs B–G, as trials for A.

6  Conclusion

While passive acoustic density estimation is becoming a widely used alternative to 
visual methods, our findings highlight the importance of satisfying key assumptions 
behind the various methods to avoid substantial bias. In particular, our study has 
highlighted some fundamental problems in implementing SECR in PAM datasets. 
First, the strong requirement for independent detections across sensors implies that a 
rigorous manual inspection protocol needs to be implemented, ensuring that manual 
reviewers cannot consult multiple data streams simultaneously to enhance the detec-
tion of weak calls. Implementing such a protocol would likely slow down the rate of 
analysis and increase the risk of missing weaker calls.

While most large-scale automatic detection algorithms do satisfy the independ-
ence assumption, and would thus seem to be suited to SECR analysis, automated 
detectors also tend to have a relatively large false detection rate for detections based 
on one sensor. When detections are compared between multiple sensors, the auto-
mated false detection rate tends to drop considerably, which ensures that the dis-
tribution of localized calls is accurate but produces inaccurate samples of calls 
detected on just a single sensor. Since DS relies on localized calls only, this method 
is unconcerned with high false detection rates on a single sensor; but for current 
SECR implementations, this high false detection rate on singletons would be fatal. 
Practical implementation of SECR on large-scale PAM datasets will therefore 
either require improvements in manual detection (without incorporating contextual 
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information from earlier times or other sensors to ensure statistical independence), 
or require further theoretical development of SECR algorithms that can exclude sin-
gletons, thus making automatic detections with high false positive rates among sin-
gletons suitable for SECR analysis.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10651- 021- 00506-3.
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