9,134 research outputs found

    A study for development of aerothermodynamic test model materials and fabrication technique

    Get PDF
    A literature survey, materials reformulation and tailoring, fabrication problems, and materials selection and evaluation for fabricating models to be used with the phase-change technique for obtaining quantitative aerodynamic heat transfer data are presented. The study resulted in the selection of two best materials, stycast 2762 FT, and an alumina ceramic. Characteristics of these materials and detailed fabrication methods are presented

    Study of the spectral properties of ELM precursors by means of wavelets

    Get PDF
    The high confinement regime (H-mode) in tokamaks is accompanied by the occurrence of bursts of MHD activity at the plasma edge, so-called edge localized modes (ELMs), lasting less than 1 ms. These modes are often preceded by coherent oscillations in the magnetic field, the ELM precursors, whose mode numbers along the toroidal and the poloidal directions can be measured from the phase shift between Mirnov pickup coils. When the ELM precursors have a lifetime shorter than a few milliseconds, their toroidal mode number and their nonlinear evolution before the ELM crash cannot be studied reliably with standard techniques based on Fourier analysis, since averaging in time is implicit in the computation of the Fourier coefficients. This work demonstrates significant advantages in studying spectral features of the short-lived ELM precursors by using Morlet wavelets. It is shown that the wavelet analysis is suitable for the identification of the toroidal mode numbers of ELM precursors with the shortest lifetime, as well as for studying their nonlinear evolution with a time resolution comparable to the acquisition rate of the Mirnov coils

    Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas

    Full text link
    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular ExB velocity shear is considered. The maximally simplified case of zero magnetic shear is treated in the framework of a local shearing box. There are no linearly growing eigenmodes, so all excitations are transient. The maximal amplification factor of initial perturbations and the corresponding wavenumbers are calculated as functions of q/\epsilon (=safety factor/aspect ratio), temperature gradient and velocity shear. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. For sufficiently low values of q/\epsilon (<7 in our model), regimes with fully suppressed ion-scale turbulence are possible. For cases when turbulence is not suppressed, an elementary heuristic theory of subcritical PVG turbulence leading to a scaling of the associated ion heat flux with q, \epsilon, velocity shear and temperature gradient is proposed; it is argued that the transport is much less stiff than in the ITG regime.Comment: 36 pages in IOP latex style; 12 figures; submitted to PPC

    Heat transfer tests of the NASA-MSC space shuttle configuration at the Langley Research Center Mach 8 Variable Density Facility

    Get PDF
    The experimental investigations performed on the NASA-Manned Spacecraft Center Space Shuttle orbiter and booster configurations at a Mach 8 variable density facility are presented. The test program was a series of aerothermodynamic wind tunnel tests that were run over a range of angles of attack, yaw angles, and Reynolds numbers. Objectives of the test program were to obtain heat transfer data over the NASA-Manned Spacecraft Center Space Shuttle orbiter, booster, and launch configurations for a range of angles of attack from - 20 to + 30 deg, yaw angles of 0 and + or - 6 deg, and Reynolds numbers of 0.6, 2.0, and 3.7 x one million. The phase-change coating technique was used to obtain heat transfer data. Information received from these tests will be instrumental in performing thermal protection systems studies and vehicle aerodynamic design

    Cooling in the X-ray halo of the rotating, massive early-type galaxy NGC 7049

    Get PDF
    The relative importance of the physical processes shaping the thermodynamics of the hot gas permeating rotating, massive early-type galaxies is expected to be different from that in non-rotating systems. Here, we report the results of the analysis of XMM-Newton data for the massive, lenticular galaxy NGC 7049. The galaxy harbours a dusty disc of cool gas and is surrounded by an extended hot X-ray emitting gaseous atmosphere with unusually high central entropy. The hot gas in the plane of rotation of the cool dusty disc has a multi-temperature structure, consistent with ongoing cooling. We conclude that the rotational support of the hot gas is likely capable of altering the multiphase condensation regardless of the tcool/tfft_{\rm cool}/t_{\rm ff} ratio, which is here relatively high, ∌40\sim 40. However, the measured ratio of cooling time and eddy turnover time around unity (CC-ratio ≈1\approx 1) implies significant condensation, and at the same time, the constrained ratio of rotational velocity and the velocity dispersion (turbulent Taylor number) Tat>1{\rm Ta_t} > 1 indicates that the condensing gas should follow non-radial orbits forming a disc instead of filaments. This is in agreement with hydrodynamical simulations of massive rotating galaxies predicting a similarly extended multiphase disc.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio
    • 

    corecore