
 

 

University of Warwick institutional repository  
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 
 

 Author(s):  F M Poli, S E Sharapov, S C Chapman 

 Article Title:  Study of the spectral properties of ELM precursors by 
means of wavelets 

 Year of publication: 2008 
 Link to published version:  

http://dx.doi.org/10.1088/0741-3335/50/9/095009  
 Publisher statement: None 

 

 

 
 
 
 
 
 
 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/47413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.iop.org/EJ/search_author?query2=F%20M%20Poli&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1�
http://www.iop.org/EJ/search_author?query2=S%20E%20Sharapov&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1�
http://www.iop.org/EJ/search_author?query2=S%20C%20Chapman&searchfield2=authors&journaltype=all&datetype=all&sort=date_cover&submit=1�
http://dx.doi.org/�
http://dx.doi.org/10.1088/0741-3335/50/9/095009�


Study of the spectral properties of ELM precursors

by means of wavelets

F. M. Poli

Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.

E-mail: f.m.poli@warwick.ac.uk

S. E. Sharapov

Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14
3DB, UK

S. C. Chapman

Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.

JET-EFDA contributors

‡

Abstract. The high confinement regime (H-mode) in tokamaks is accompanied by
the occurrence of bursts of MHD activity at the plasma edge, so-called edge localized
modes (ELMs), lasting less than 1 ms. These modes are often preceded by coherent
oscillations in the magnetic field, the ELM precursors, whose mode numbers along
the toroidal and the poloidal direction can be measured from the phase shift between
Mirnov pickup coils. When the ELM precursors have a lifetime shorter than a few
ms, their toroidal mode number and their nonlinear evolution before the ELM crash
cannot be studied reliably with standard techniques based on Fourier analysis, since
averaging in time is implicit in the computation of the Fourier coefficients. The present
work demonstrates significant advantages in studying spectral features of the short-
lived ELM precursors by using Morlet wavelets. It is shown that the wavelet analysis
is suitable for the identification of the toroidal mode numbers of ELM precursors with
the shortest lifetime, as well as for studying their nonlinear evolution with a time
resolution comparable to the acquisition rate of the Mirnov coils.
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1. Introduction

The high confinement regime (H-mode) in tokamaks is often accompanied by bursts of

MHD activity, associated with an increase in the Dα emission at the edge [1]. These

instabilities, occurring at the edge and therefore known as edge localized modes (ELMs)

are the cause of particle and energy losses that may result in a reduction of the energy

confinement time as large as 20% [1]. ELMs are commonly classified on the basis

of the occurrence of magnetic precursors and on the dependence of the ELM repetition

frequency on the energy flux through the separatrix [1][2][3][4]. According to this criteria

one can identify two main classes of ELMs, type-I and type-III, depending on whether

the repetition frequency increases or decreases with the energy flux.

On the JET tokamak, both type-I and type-III ELMs are MHD events lasting between

0.3 and 1 ms; magnetic precursors of type-I ELMs have been detected lasting from

a few ms to hundredths of ms. These precursors were studied by Perez et al [5],

although precursors with lifetime shorter than a few milliseconds were excluded from

that analysis due to the intrinsic difficulty of assessing them with standard Fourier

techniques. This work focuses on the study of the spectral properties of these short-lived

perturbations by using Morlet wavelets, i.e. sinusoidal modulated functions, instead of

Fourier eigenmodes, for the first time. A number of plasma discharges in H-mode have

been analyzed with wavelets, with both type-I and type-III ELMs. However, for the

purposes of this paper, aimed at introducing and describing the wavelet analysis applied

to ELMs and to ELM precursors, we focus on one typical example, a H-mode plasma

discharge with type-I ELM precursors and show the advantages of wavelet analysis with

an example for type-III ELMs. The method and the basic concepts of wavelet analysis

are introduced in section 2. The results and possible pitfalls are discussed in section

3, illustrating as an example the linear and nonlinear spectral features of a short-lived

type-I ELM precursor. Finally, future applications of wavelet analysis for studying the

toroidal mode number and the nonlinear evolution of ELMs are discussed in section 4.

2. Method

Fourier analysis has traditionally been the starting point to analyse stationary

fluctuations in a plasma, under the hypothesis that the signal can be regarded as a linear

superposition of independent, monochromatic, sinusoidal waves. If the fluctuations are

not stationary, the variations of the wave field amplitude and phase over short time

scales are not captured in the Fourier spectrum due to time averaging implicit in the

Fourier transform. In this case a representation of the plasma wave fields in terms

of wavelets is more appropriate. We first briefly review relevant concepts in wavelet

analysis, and refer the reader to Mallat [6] for a complete and extensive discussion of

wavelets and time-frequency analysis. The Morlet wavelet is the natural choice when the

focus of the analysis is spectral features, as it essentially represents Fourier eigenmodes
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Figure 1. Real (left) and imaginary (right) part of the Morlet wavelet, equation (1),
for ω0 = 2π and σ = 1.

whose energy is localized in time. It is defined as:

ψ(t) = π−1/4e−t
2/2σ2

eıω0t (1)

and its real and imaginary part are illustrated in figure 1 in the case of σ = 1 and

ω0 = 2π. A family of wavelets can be constructed from (1) by scaling and shifting ψ(t):

ψsτ (t) =
1√
s
ψ

(
t− τ
s

)
= (πs2)−1/4e−

(t−τ)2

2s2 e2πı
t−τ
s , (2)

where the factor (s)−1/2 has been introduced for normalization and we have set σ = 1 and

ω0 = 2π. There is thus a clear point of contact with Fourier eigenmodes, of frequency

ω, that are time localized over s.

The continuous wavelet transform (CWT) of a discrete time series xn, sampled at the

rate δt, is defined as the convolution product of xn with ψsτ (t):

Wm(s) =
N−1∑
n=0

xnψ
∗
(
n−m
s

δt

)
(3)

Apart from normalization factors, the only difference between (3) and the windowed

Fourier transform is that the windowing is intrinsic in the wavelet transform and it

depends on scale.

Equation (3) is computationally highly inefficient, since it involves N2 operations. Using

the property that the Fourier transform of a convolution product is the product of

the Fourier transforms, algorithms based on the Fast Fourier Transform can be used

to calculate the CWT, with considerable efficiency gain. The wavelet transform is

computed at scales s = s0a
j, where s0 is the minimum available scale and, for each

value of j, a = 2−ν , where ν is an integer number that provides a refining of scales in

each octave (2j, 2j+1] [6].

Spectral quantities, such as the linear dispersion relation, are defined for wavelets in

the same way as for Fourier transforms. From two time series measured at toroidal

locations φ1 and φ2 respectively, the toroidal mode number at each time tm = mδt can

be extracted from the relative phase shift as:

nm(φ, s) =
1

∆φ
arg [W ∗

m(φ1, s)Wm(φ2, s)] (4)

where W ∗
m(φ1, s)Wm(φ2, s) is the cross-power spectrum between the two signals. For the

sake of simplicity, the explicit dependence on the position φ1,2 will be omitted in the
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rest of the paper.

In the same manner as with Fourier transforms, wavelets can be used to calculate higher

order spectra, such as the bispectrum [7]. Wavelets can however quantify the degree of

nonlinear coupling over time scales shorter than those accessible by Fourier analysis.

The wavelet bispectrum between t1 = m1δt and t2 = (m1 +M)δt is defined as:

B(s1, s2) =
1

M

m1+M∑
m=m1

Wm(s1)Wm(s2)W
∗
m(s3) (5)

where the scales s1, s2 and s3 are such that the associated frequencies satisfy the

resonance condition ω1 + ω2 = ω3. If nonlinear interactions are present in a time

series, both their frequencies and their phases are correlated according to the resonance

condition, so that the value of |B(s1, s2)| converges to a finite value as M becomes

large. Equation (5) is valid provided that the degree of nonlinearity is weak and that

fluctuating quantities can therefore be represented as (time localized) sinusoidal waves

[7][8]. The value of M should be taken as large as possible to guarantee convergence of

the bispectrum [7]. Typically the average in (5) should be calculated over time windows

much longer than the wave period, although the number of required samples may be

reduced if the signal-to-noise ratio is high and/or if only a few coupled modes are present

in the spectrum. The suitability of wavelets to calculate higher order spectra in order

to isolate short-lived, coherent, nonlinear structures in intermittent plasma time series

was discussed by van Milligen et al [9].

An estimate of the bispectrum, independent of the power spectrum of the interacting

components, is provided by the bicoherence [8]:

b2(s1, s2) =
|
∑

mWm(s1)Wm(s2)W
∗
m(s3)|2∑

m |Wm(s1)Wm(s2)|2
∑

m |Wm(s3)|2
(6)

Importantly, although algorithms based on the Fast Fourier Transform are more

computationally efficient methods to calculate the CWT, equation (3) is more suitable

for the computation of higher order spectra. When the time series is decomposed in

terms of diadic bases, in fact, the logarithmic scales log2(s) form a uniform grid with

separation ν−1. On the other hand, due to the inverse proportionality between ω and

s, the resulting frequency grid is not uniform. This reflects in the inability of satisfying

the resonance condition among frequencies.

Let ω1, ω2 and ω3 be three spectral components that satisfy ω1 + ω2 = ω3. Using

the relation between frequency and scale and after some manipulation, the resonance

condition among frequencies corresponds to the following relation among scales:

log2 s = log2 s1 + log2 s2 − log2(s1 + s2) (7)

Because of the last term on the right hand side, the term on the left hand side is not

necessarily associated to any point in the computed grid of scales and thus ω3 does

not match 2π/s. When calculating higher order spectra it is therefore preferable to fix

the frequency grid first, then compute the corresponding scales and use equation (3) to

compute the CWT.
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Figure 2. (a) Time trace of the magnetic fluctuations measured in JET pulse #53062,
with an outer edge Mirnov pick-up coil, positioned at R = 3.881 m, z = 1.013 m,
sampled at 1 MHz, during 0.4 s of current flat-top discharge with constant NBI power of
13 MW. (b) Time trace of Dα emission, measured in the outer divertor and sampled at
10 kHz. (c) Excerpt of magnetic perturbations, with zoom on the first ELM precursor.
(d) Wavelet coefficients in the range of frequencies [2, 10] kHz. (e) Same as (d), but in
range of frequencies [18, 20] kHz.

3. Results

3.1. Type-I ELM precursors

Precursors to the ELMs are observed on JET as magnetic perturbations in the signal

measured by a set of calibrated edge Mirnov pickup coils [10]. We will now use the

concepts introduced in the previous section to study the evolution in time of the spectral

features of ELM precursors, such as the amplitude, the frequency and the toroidal mode

number. We will use for the analysis the magnetic perturbations measured by two

Mirnov coils, positioned at the same major radius, R = 3.881 m, at z1 = 1.013 m and

z2 = 1.005 m above the midplane, and with orientation θ = 108.9 degrees between the

coil axis and the major radius. The two coils are separated by ∆ϕ = 10.17 degrees

along the toroidal direction, allowing the measurement of toroidal mode numbers up

to |n| = 17. This subset of coils is sampled at 1 MHz, thus providing good resolution

in time. Although the wavelet analysis has been applied to study a number of H-

mode plasma discharges on JET with type-I ELMs, we concentrate on one example

- typical for most of the cases considered so far - to illustrate the technique. The

chosen discharge pulse #53062 is a typical ELMy plasma with type-I ELMs, in which

precursors are detected. All the precursors observed in this discharge have similar

frequency and toroidal mode number, but their lifetime can vary from less than 1 ms to

hundredths of ms. In the case of the longer-lived precursors the results with wavelets

can be directly compared with the Fourier analysis, thus providing a test of reliability
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for the wavelet analysis. The precursors with longer lifetime were analyzed in detail

by Perez et al [5] in the framework of an extensive study of type-I ELM precursors.

The analysis in that work was restricted to precursors with lifetime typically a few tens

of milliseconds, the choice being dictated by the difficulty of discerning in the Fourier

spectrogram precursors with lifetime shorter than a few ms. The time dependent Fourier

spectra of the amplitude of magnetic perturbations and the associated toroidal mode

number for this discharge are shown in figures 2-3 of [5] and therefore they are not

reported here. Figure 2shows the time trace of magnetic perturbations measured in the

time window between 22.0 and 22.4 s. Three ELMs can be seen to occur in the time

window of interest; they are associated with large spikes in the magnetic perturbations

that correlate with the peaks detected in the time traces of the Dα emission. In figure

3 we can see that significant spectral energy is associated with the ELMs and with

coherent modes in the power spectrum, such as the ELM precursors at frequency ∼ 20

kHz and the sawtooth precursor at frequency ∼ 15 kHz. The exact correspondence

between frequencies and scales has been verified by computing the CWT of a cosine

function with given frequency. For graphical representation purposes, for each scale

s the wavelet coefficients in figure 3 have been rescaled with respect to the difference

between the maximum and the minimum value measured at that scale:

|W ′
m(s)| = |Wm(s)| − |Wm(s)|min

|Wm(s)|max − |Wm(s)|min

× 256 (8)

The final values of |W ′
m(s)| are bounded between 0 and 256.

Oscillations at constant frequency below 1 kHz, that is at log2(s) > 12, are detected

in the wavelet spectrum, they are most probably related to external power supplies on

JET. One should therefore discard all wavelet coefficients corresponding to scales sj
such that log2(s) > 12. A broadening in time is observed in the computed wavelet

scalogram for the largest scales, typically larger than log2(s) > 12, in time windows

centred on the ELMs. This feature, which is more evident for the second ELM in figure

3, is observed also in other discharges and it appears to occur for large amplitude type-I

ELMs, namely those associated with higher Dα emission.

Figure 3 also shows a plot of the toroidal mode number calculated from the phase

shift between the two Mirnov coils, using equation (4). From the figure we can see

the following. First, for the precursor to the second ELM, which has longer lifetime,

shown in figure 3-(c), the toroidal mode number calculated with the wavelet analysis

is n ∼ 8 and consistent with the results from Fourier analysis discussed in [5]. For the

precursor to the first ELM, which has much shorter lifetime, shown in figure 3-(b), the

toroidal mode number is also n ∼ 8, as we would expect, since this is the value found

for the longer lived precursor in figure 3-(c). Second, both precursors are stopped by

the ELMs and the toroidal mode number seen at the same frequency of the precursor

becomes negative and large in absolute value. Large phase jumps are measured during

the ELMs that may affect the final results, as it will be discussed below. These time

localized variations in the value of n cannot be measured with standard Fourier analysis

and constitute a significant step forward that has emerged from the wavelet analysis in
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Figure 3. (Colour)(a) Wavelet scalogram. For each scale, the wavelet coefficients
have been rescaled according to equation 8. Lines indicate the ELM precursors at
frequency 20 kHz and the sawtooth precursor at frequency 15 kHz. (b)-(c) Toroidal
mode number (color coded) measured in a window centred on the first and on the
second ELM. Dark blue corresponds to a rescaled power spectral amplitude below 20
in the left figure.

the study of the spectral properties of ELMs and of their precursors. Third, the toroidal

mode numbers measured during the ELMs and at lower frequencies, are low in absolute

value, namely n = 1− 2.

An excerpt of the measured magnetic perturbations in a 3 ms time window centred on

the time at which the first ELM occurs is shown in figure 2-(c). The magnetic precursor

can be seen in the time trace from the Mirnov coil, it appears approximately 2 ms before

the ELM and it is not detected after the ELM. The slow asymmetric oscillation in the

magnetic signal during the ELM can be captured by the Morlet wavelet coefficients

in the frequency range of [2,10] kHz, as shown in figure 2-(d). Nevertheless, as also

inferred from the time trace of magnetic perturbations and from the wavelet scalogram,

components at low frequency and (at relatively smaller amplitude) at high frequency,

both contribute to the total perturbations measured during the ELM.

The amplitude of the spectral components in the frequency range of [18, 20] kHz, shown

in figure 2-(e), increases linearly during 1.5 ms and then it reaches saturation, staying

constant until the ELM occurs; a further increase in the amplitude is measured in this

frequency range during the ELM. A similar amplitude saturation, occurring 1 ms after

the appearance of the precursor, was observed (using Fourier techniques) on JET for

precursors with longer lifetime [5].

To isolate the precursor, and to follow the time evolution of the associated toroidal

mode number, we now average the cross-power spectrum over time windows of width

decreasing from 1 ms to 10 µs. We fit then the wavelet cross-power spectrum in each

window with a recursive fitting procedure, assuming that the peaks have a Gaussian
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Figure 4. (Colour)(a) Time trace of the magnetic perturbations during the first
ELM, also shown in figure 2-(c). (b) Toroidal mode number, extracted from the
phase shift between magnetic perturbations measured by two edge Mirnov pickup coils,
positioned at R = 3.881 m, z ' 1.01 m above the midplane, and toroidally separated
by ∆ϕ = 10.17 degrees. The two curves refer to the phase shift measured at 18 kHz
(black line) and at 20 kHz (red line). (c) Time trace of the Dα emission measured in
the divertor and total bispectrum Btot, calculated averaging over 20 µs and 200 µs.
(d) Amplitude of the precursor, calculated averaging over τ2 = 200 µs (♦) and over
τ1 = 20 µs (•). (e) Same as (d), but for the averaged frequency. The vertical bars
indicate the width of the peak, resulting from a Gaussian fit of the peak. (f) Same as
(d) but for the averaged toroidal mode number.

envelope, according to the shape of the Morlet wavelet. The amplitude, the central

frequency and the spectral width of each peak are given by the parameters of the

Gaussian curve. The fitting procedure allows one to isolate peaks with amplitude

significantly larger than a selected fraction of the background level. The average over

windows with progressively decreasing width is a check for convergence of the calculated

linear quantities, namely the amplitude and the toroidal mode number.

We will show results for averaging over two time windows, τ1 = 20 µs, and τ2 = 200 µs,

corresponding respectively to 20 and 200 samples. The shorter interval τ1 is at the limit

of time resolution available, since it is shorter than the wave period of the precursor, that

is 50 µs. Averaging over τ1 introduces an apparent time oscillation in the amplitude, as

shown in figure 4-(d), which is not present for averaging over the longer time window

τ2. These results can be used as a check on our results observed for window τ1.

Figure 4 shows the time evolution of the amplitude, frequency and toroidal mode number

of the first ELM precursor, starting from the time when it is detected as a coherent mode,

until the ELM crash. The amplitude of the precursor increases roughly linearly (rather

than exponentially) in time, although with a larger growth rate during the first 1.5 ms. If
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we use an average over time windows shorter than those associated with the wave period,

as in the case of results for τ1, the resultant amplitude oscillates; this artifact is a result

of the spectral analysis. Generally speaking, time windows a few times longer than the

wave period should be taken when calculating average linear spectral quantities, such

as the amplitude and the phase shift. On JET, precursors to type-I ELMs are observed

in plasmas heated by Neutral Beam Injection, at frequencies typically lower than 40

kHz. Depending on the frequency of the precursors, variations in time of the amplitude,

frequency and mode number of precursors can be followed with good statistical accuracy

over time scales down to 25 µs.

Oscillations are also seen in the time evolution of the frequency of the precursor, which

are correlated in time with the time variations of the amplitude, suggesting that this

is also an effect of the averaging. These oscillations are nevertheless smaller than the

spectral width of the peak; the latter is shown in figure 4-(e) as vertical bars in the

results for τ2. The frequency of the precursor decreases from 20 kHz to 18 kHz before

the ELM, although the total variation is comparable to the width of the peak and thus

it is not significant.

The toroidal mode number is measured from the phase shift in a frequency range centred

on the frequency of the mode and of width equal to the spectral width of the mode. The

error in the measurement of the phase is given by the maximum dispersion associated

with the average value in each time window. Variations of the toroidal mode number

before the ELM are outside the range of the errors introduced from the measurement of

the phase, although we cannot exclude that the small oscillations measured in the case

of averaging over τ1 are due to the choice of the window. Importantly, the increase in

the toroidal number measured at approximately 22.945 s is also seen in the results for

the window τ2 and in the time evolution of the phase shift between the filtered signals,

shown in figure 4-(b); it can be therefore interpreted as a real feature in the data. A

large, smooth variation in the toroidal mode number is detected approximately 150 µs

before the ELM burst, with the value of n decreasing from approximately 9 to 4. This

is most probably due to the high level of nonlinear interactions that occur during the

phase that precede the ELM crash, as shown in figure 4-(c).

The possible effect on our analysis of phase jumps of 2π in the variation of the mode

number can also be excluded. As shown in figure 4-(b), in fact, phase jumps of 2π

are measured approaching the ELM only for non-coherent spectral components, while

smooth variations in the phase are associated with coherent spectral components, as is

the case for the component at 18 kHz, which we plot in figure 4(e).

We have computed the wavelet bispectrum integrating over time windows of decreasing

length from 1 ms to 20 µs and, from this, the associated total bispectrum Btot as [9]:

Btot =
∑
ω

Bsum(ω) with Bsum(ω) =
∑
ω1,ω2

|B(ω1, ω2)| (9)

where, for the sake of simplicity, we have written the bispectrum as a function of

the frequency. The summed bispectrum Bsum represents the contribution of nonlinear

interactions at each frequency ω that are due to phase coupling of all those spectral
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components with frequency ω1 and ω2 that satisfy the resonance condition ω1 +ω2 = ω.

The total bispectrum, Btot quantifies the total degree of nonlinearity in the time window

where the bispectrum has been computed. The total bicoherence is defined in the

same way, with |B(ω1, ω2)| replaced by b2(ω1, ω2) in (9). As discussed in [9] the total

bicoherence (and the total bispectrum), calculated over an intermittent time series, give

an indication of times where nonlinear interactions due to large amplitude, coherent

events, are largest.

Figure 4-(c) shows the total bispectrum over plotted on the Dα emission for the windows

τ1 and τ2. The value of Btot peaks during the phase of fast rise in the Dα emission,

suggesting the presence of nonlinear interactions, highly localized in time, during this

phase. In the case of the results for τ1, the value of Btot is larger and peaked in a

shorter interval in time during the fast rise in the Dα. When integrating over longer

time windows, as in the case of τ2, nonlinear interactions that are localized in time,

are spread over the longer time window, resulting in a lower amplitude of Btot. On the

other hand, the smaller the integration time, the larger the error in the estimate of the

bispectrum and of the bicoherence from equations (5)-(6), due to poor statistics [7].

In order to find the minimum number of samples M necessary to guarantee convergence

of the bispectrum and of the bicoherence, we have proceeded as follows. From the

complex wavelet coefficients Wm(s) we construct surrogate series in the frequency

domain, by retaining the amplitude and randomizing the phases [11]. The resulting

series have the same power spectrum as the original, as the amplitude of perturbations

are unaltered, but any phase coupling is destroyed. We then calculate the bispectrum

and the bicoherence of the surrogate series and compute the total bispectrum Btot

and the total bicoherence b2tot from (9). The value of the bispectrum and of the

bicoherence associated with the surrogate series can be regarded as an estimate of

the noise introduced in the computation of B(ω1, ω2). Only values above this noise

level should be retained as an indication of the presence of phase coupling in the

time series. Whenever nonlinearities are present in the signal, the ratio between Btot

(and b2tot) calculated from the original series and that calculated from the surrogate

series significantly differ from unity. This ratio nevertheless depends on the number of

samples used for the computation of B(ω1, ω2) and we expect that it approaches unity

with decreasing M because of the poor statistics in the computation of the bispectrum.

Conversely, if nonlinearities are absent, we expect this ratio to be close to unity, although

deviations from this value can be expected for low M , again due to poor statistics.

The results from the original series and from the surrogate series are shown in figure

5-(a). We can see that the ratio of the total bicoherence b2tot of the original series to that

of the surrogate series decreases from approximately 8 to 3 when the window length

is reduced from 1 ms to 20 µs. Comparable values are measured also for the ratio of

the total bispectrum of the original series to that of the surrogate series. For times

of integration longer than τ2, we find that the signal-to-noise ratio is barely improved

by increasing the number of samples (i.e. the length of the window). We conclude

that M = 200 is a sufficiently large number of samples to guarantee convergence of the
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Figure 5. (Colour) Left: effect of the number of samples on the calculation of higher
order spectra. (a) ratio of the total bicoherence b2tot (�) and of the total bispectrum
Btot (�) to the corresponding quantities, b2tot,s and Btot,s calculated over the surrogate
series. (b) ratio of the total bispectrum Btot computed at the time t0 where it is
maximum to the value B̄tot computed in a 4 ms time window before t0. (c) same
as (b) but for the total bicoherence b2tot. Right-top: Bispectrum of the magnetic
perturbations, calculated over 200 samples, measured approximately 800 µs (d) and
200 µs (e) before the ELM. Right-bottom: power spectral density (psd) of magnetic
perturbations, arbitrary units, averaged over 200 samples, computed 800 µs (f) and
200 µs (g) before the ELM.

bispectrum and, thus, of the bicoherence.

Figure 5-(b) shows the ratio of Btot measured at the time t0 where it is maximum, to

that measured in a 4 ms time window before the ELM, when nonlinear interactions

are negligible with respect to those occurring at t0. The corresponding ratio for b2tot,

computed at the same times, is shown in figure 5-(c). We can see that, in the case of the

bispectrum, the ratio increases with decreasing the number of samples. This is due to the

high localization in time of nonlinear interactions, as discussed above and also shown

by the time evolution of Btot in figure 4-(c). Conversely, the ratio of b2tot measured

at t0 to that measured far from t0 increases with increasing the number of samples.

This is due to the fact that the bicoherence is a biased quantity, with bias 4
√

3/M and

variance 4b2(ω1, ω2)[1−b2(ω1, ω2)]/M [12]. Both the bias and the variance decrease with

increasing the number of samples. We find that, when we decrease the time window

length down to values comparable to the wave period, the level of total bicoherence

increases in all time windows and there is no clear separation between the value of

b2tot measured at t0 and that measured away from it. For time windows comparable to

the wave period, the value of b2tot is not a good indication of the localization in time of

nonlinear interactions, as indicated by the low values in figure 5-(c), the total bispectrum
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should be used instead.

Since nonlinear interactions during the ELMs are highly localized in time during the

fast rise in the Dα emission, which occurs on JET typically over time scales comparable

to τ2, shorter times of integration are needed to follow the nonlinear dynamics of ELMs

during this phase. Nevertheless, as shown in figure 5-(c), the number of samples should

be taken as large as possible to guarantee convergence of the bicoherence. In those

cases where a large number of ELMs with similar characteristics are present in the same

discharge, such as in the case of type-III ELMs, or in the case of regular type-I ELMs,

the signal-to-noise ratio can be increased calculated higher order spectra over ensembles

of ELMs.

Figures 5(d)-(e) show the bispectrum calculated by averaging over τ2, for (d) 600 µs and

(e) 200 µs before t0. As shown in the figure, before the ELM and during the phase where

we have seen that the amplitude of the precursors increases linearly, the bispectrum

is large for interactions involving the precursor (at ω/2π ∼ 20 kHz) and spectral

components with the lowest frequencies, namely ω/2π < 5 kHz. In correspondence

of the generation of the second harmonics, for (ω1/2π, ω2/2π) = (20, 20), the amplitude

of the bispectrum is above the background level, although it is approximately 20% of the

peak value. The phase coupling among low frequency spectral components increases as

we approach t0, as shown in figure 5(e). In general, the range of frequencies involved in

the interactions and their strength depend on the details of the experiment and on the

global spectral features. For example, when other modes are present in the spectrum,

such as washboard modes [13], phase coupling between these modes and the precursor

may be measured [5].

3.2. Type-III ELM precursors and post-cursors

In order to underline the advantage of the Morlet wavelet analysis for identifying

short-lived precursor and post-cursors, we show in figure 6 an example of the wavelet

spectrogram computed in the case of a H-mode plasma with type-III ELMS on JET

(pulse #52308). Interestingly, wavelet analysis reveals in this case features that cannot

be captured with standard Fourier analysis. Both pre-cursors and post-cursors to

type-III ELMs are detected in the wavelet spectrogram. Precursors with lifetime

typically below 5 ms are visible at scales log2(s) ∼ 7, corresponding to frequencies

of approximately 65 kHz. They have toroidal mode numbers n ∼ 10. A post-cursor

with lifetime of approximately 5 ms is detected at t ∼ 22.63 s. Harmonics of the

post-cursor are visible, whose frequency decreases with time and whose toroidal mode

numbers start from n = 1 at the lowest frequency harmonics and increase with steps

of ∆n = 1 for higher harmonics. Post-cursors with lifetime below 1 ms are detected in

figure 6 occurring right after other ELMs, for example at 22.43 s and at 22.5 s. They

are not visible in the Fourier spectrogram, but can be identified by the Morlet wavelet.
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Figure 6. JET pulse #52308. Wavelet spectrogram computed from (3), taking
ω0 = 3π in 1 for a better frequency localization. Lines above the figure point to
some of the post-cursors.

4. Conclusions

By analysing a time series that has been previously treated with Fourier spectral

analysis, we demonstrate that wavelet analysis is suitable to identify spectral features

of ELM precursors, such as the toroidal mode number and the nonlinear evolution over

time scales comparable with the wave period. The calculated toroidal mode numbers

are consistent with the results from the Fourier analysis in the case of precursors with

lifetime longer than a few ms. In the case of precursors with lifetime shorter than 1 ms,

where Fourier analysis cannot capture the spectral features, wavelet analysis is reliable to

extract the toroidal mode number with good statistics in time. Importantly, variations

of the amplitude, frequency and toroidal mode number of precursors can be followed over

time scales comparable with the wave period. It is shown that, using Morlet wavelets,

coherent modes in the power spectrum, such as precursors and post-cursors to type-

III ELMs, are detected over time windows comparable to a few times the acquisition

time. The positive results of wavelet analysis applied to precursors encourage their

application to the study of the spectral features of ELMs themselves, including their

toroidal mode number, important for e.g. assessing the linear stability with finite ion

Larmor radius effects included. Preliminary results from the computation of spectra in

ELMy H-mode plasmas with wavelets indicate that the toroidal mode number of type-I

ELMs is different from the toroidal mode number of precursors, but it may correlate

with that of post-cursors [14]. An extended comparison of the spectral features of both

type-I and type-III ELMs, including the correlation with the toroidal mode numbers

of precursors and post-cursors is work in progress and will constitute the subject of a
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separate work.
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