68 research outputs found

    Alien Registration- Conley, Mary T. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/25259/thumbnail.jp

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    Genome-wide association study identifies 74 loci associated with educational attainment

    Get PDF
    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals1. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases

    Alien Registration- Conley, Mary T. (Portland, Cumberland County)

    No full text
    https://digitalmaine.com/alien_docs/25259/thumbnail.jp

    The stochastic nature of errors in next-generation sequencing of circulating cell-free DNA.

    No full text
    Challenges with distinguishing circulating tumor DNA (ctDNA) from next-generation sequencing (NGS) artifacts limits variant searches to established solid tumor mutations. Here we show early and random PCR errors are a principal source of NGS noise that persist despite duplex molecular barcoding, removal of artifacts due to clonal hematopoiesis of indeterminate potential, and suppression of patterned errors. We also demonstrate sample duplicates are necessary to eliminate the stochastic noise associated with NGS. Integration of sample duplicates into NGS analytics may broaden ctDNA applications by removing NGS-related errors that confound identification of true very low frequency variants during searches for ctDNA without a priori knowledge of specific mutations to target
    corecore