79 research outputs found

    Differential effects of dietary canola and soybean oil intake on oxidative stress in stroke-prone spontaneously hypertensive rats

    Get PDF
    Background: Canola oil shortens the life span of stroke-prone spontaneously hypertensive (SHRSP) rats compared with rats fed soybean oil when given as the sole dietary lipid source. One possible mechanism leading to the damage and deterioration of organs due to canola oil ingestion is oxidative stress. This study investigated the effect of canola oil intake on oxidative stress in this animal model.Method: Male SHRSP rats, were fed a defatted control diet containing 10% wt/wt soybean oil or a defatted treatment diet containing 10% wt/wt canola oil, and given water containing 1% NaCl. Blood pressure was measured weekly. Blood was collected prior to beginning the diets and at the end of completion of the study for analysis of red blood cell (RBC) antioxidant enzymes, RBC and plasma malondialdehyde (MDA), plasma 8- isoprostane and plasma lipids.Results: Canola oil ingestion significantly decreased the life span of SHRSP rats compared with soybean oil, 85.8 &plusmn; 1.1 and 98.3 &plusmn; 3.4 days, respectively. Systolic blood pressure increased over time with a significant difference between the diets at the 6th week of feeding. Canola oil ingestion significantly reduced RBC superoxide dismutase, glutathione peroxidase and catalase activities, total cholesterol and low-density lipoprotein cholesterol compared with soybean oil. There were no significant differences in RBC MDA concentration between canola oil fed and soybean oil fed rats. In contrast, plasma MDA and 8-isoprostane concentration was significantly lower in the canola oil group compared to the soybean oil group.Conclusion: In conclusion, canola oil ingestion shortens the life span of SHRSP rats and leads to changes in oxidative status, despite an improvement in the plasma lipids.<br /

    A novel in vitro whole plant system for analysis of polyphenolics and their antioxidant potential in cultivars of Ocimum basilicum

    Full text link
    Plants are an important source for medicinal compounds. Chemical screening and selection is critical for identification of compounds of interest. Ocimum basilicum (Basil) is a rich source of polyphenolics and exhibits high diversity, therefore bioprospecting of a suitable cultivar is a necessity. This study reports on the development of a true to type novel &quot;in vitro system&quot; and its comparison with a conventional system for screening and selection of cultivars for high total phenolics, individual polyphenolics, and antioxidant content. We have shown for the first time using online acidic potassium permanganate chemiluminescence that extracts from Ocimum basilicum showed antioxidant potential. The current study identified the cultivar specific composition of polyphenolics and their antioxidant properties. Further, a distinct relationship between plant morphotype and polyphenolic content was also found. Of the 15 cultivars examined, &quot;Holy Green&quot;, &quot;Red Rubin&quot;, and &quot;Basil Genovese&quot; were identified as high polyphenolic producing cultivars while &quot;Subja&quot; was determined to be a low producer. The &quot;in vitro system&quot; enabled differentiation of the cultivars in their morphology, polyphenolic content, and antioxidant activity and is a cheap and efficient method for bioprospecting studies

    Determination of intracellular glutathione and glutathione disulfide using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection

    Full text link
    Measurement of glutathione (GSH) and glutathione disulfide (GSSG) is a crucial tool to assess cellular redox state. Herein we report a direct approach to determine intracellular GSH based on a rapid chromatographic separation coupled with acidic potassium permanganate chemiluminescence detection, which was extended to GSSG by incorporating thiol blocking and disulfide bond reduction. Importantly, this simple procedure avoids derivatisation of GSH (thus minimising auto-oxidation) and overcomes problems encountered when deriving the concentration of GSSG from &lsquo;total GSH&rsquo;. The linear range and limit of detection for both analytes were 7.5 &times; 10&minus;7 to 1 &times; 10&minus;5 M, and 5 &times; 10&minus;7 M, respectively. GSH and GSSG were determined in cultured muscle cells treated for 24 h with glucose oxidase (0, 15, 30, 100, 250 and 500 mU mL&minus;1), which exposed them to a continuous source of reactive oxygen species (ROS). Both analyte concentrations were greater in myotubes treated with 100 or 250 mU mL&minus;1 glucose oxidase (compared to untreated controls), but were significantly lower in myotubes treated with 500 mU mL&minus;1 (p &lt; 0.05), which was rationalised by considering measurements of H2O2 and cell viability. However, the GSH/GSSG ratio in myotubes treated with 100, 250 and 500 mU mL&minus;1 glucose oxidase exhibited a dose-dependent decrease that reflected the increase in intracellular ROS.<br /

    Development of a resin based silica monolithic column encapsulation

    Full text link
    As monolithic columns become more extensively used in separation based applications due to their good flow and high surface characteristics, there has arisen the need to establish simple, reliable fabrication methods for fluidic coupling and sealing. In particular, the problem of liquid tracking between a monolith\u27s outer surface and the sealing wall, resulting in poor flow-through performance, needs to be addressed. This paper describes a novel resin-based encapsulation method that penetrates 0.3 mm into the outer surface of a 4 mm diameter monolith, removing the so-called wall-effect. Results based on the peak analysis from 1 &mu;L of 0.4% thiourea injected into a 98:2 water:methanol mobile phase flowing at 1 mL min-1 indicate excellent flow conservation through the monolith. A comparison of peak shape and height equivalent to a theoretical plate (HETP) data between the reported resin-based method and the previously reported heat shrink tubing encapsulation methodology, for the same batch of monoliths, suggests the resin based method offers far superior flow characteristics. In addition to the improved flow properties, the resin casting method enables standard polyether ether ketone (PEEK) fittings to be moulded and subsequently unscrewed from the device offering simple reliable fluidic coupling to be achieved

    Observations and models to support the first Marine Ecosystem Assessment for the Southern Ocean (MEASO)

    Get PDF
    Assessments of the status and trends of habitats, species and ecosystems are needed for effective ecosystem-based management in marine ecosystems. Knowledge on imminent ecosystem changes (climate change impacts) set in train by existing climate forcings are needed for adapting management practices to achieve conservation and sustainabililty targets into the future. Here, we describe a process for enabling a marine ecosystem assessment (MEA) by the broader scientific community to support managers in this way, using a MEA for the Southern Ocean (MEASO) as an example. We develop a framework and undertake an audit to support a MEASO, involving three parts. First, we review available syntheses and assessments of the Southern Ocean ecosystem and its parts, paying special attention to building on the SCAR Antarctic Climate Change and Environment report and the SCAR Biogeographic Atlas of the Southern Ocean. Second, we audit available field observations of habitats and densities and/or abundances of taxa, using the literature as well as a survey of scientists as to their current and recent activities. Third, we audit available system models that can form a nested ensemble for making, with available data, circumpolar assessments of habitats, species and food webs. We conclude that there is sufficient data and models to undertake, at least, a circumpolar assessment of the krill-based system. The auditing framework provides the basis for the first MEASO but also provides a repository (www.SOKI.aq/display/MEASO) for easily amending the audit for future MEASOs. We note that an important outcome of the first MEASO will not only be the assessment but also to advise on priorities in observations and models for improving subsequent MEASOs

    Salt loading in canola oil fed SHRSP rats induces endothelial dysfunction

    Get PDF
    This study aimed to determine if 50 days of canola oil intake in the absence or presence of salt loading affects: (1) antioxidant and oxidative stress markers, (2) aortic mRNA of NADPH oxidase (NOX) subunits and superoxide dismutase (SOD) isoforms and (3) endothelial function in SHRSP rats. SHRSP rats were fed a diet containing 10 wt/wt% soybean oil or 10 wt/wt% canola oil, and given tap water or water containing 1% NaCl for 50 days. Without salt, canola oil significantly increased RBC SOD, plasma cholesterol and triglycerides, aortic p22phox, NOX2 and CuZn-SOD mRNA, and decreased RBC glutathione peroxidase activity. With salt, canola oil reduced RBC SOD and catalase activity, LDL-C, and p22phox mRNA compared with canola oil alone, whereas plasma malondialdehyde (MDA) was reduced and RBC MDA and LDL-C were higher. With salt, the canola oil group had significantly reduced endothelium-dependent vasodilating responses to ACh and contractile responses to norepinephrine compared with the canola oil group without salt and to the WKY rats. These results indicate that ingestion of canola oil increases O2 - generation, and that canola oil ingestion in combination with salt leads to endothelial dysfunction in the SHRSP model
    • …
    corecore