237 research outputs found

    Planning and design support tools for walkability: a guide for urban analysts

    Get PDF
    We present a survey of operational methods for walkability analysis and evaluation, which we hold to show promise as decision-support tools for sustainability-oriented planning and urban design. An initial overview of the literature revealed a subdivision of walkability studies into three main lines of research: transport and land use, urban health, and livable cities. A further selection of articles from the Scopus and Web of Science databases focused on scientific papers that deal with walkability evaluation methods and their suitability as planning and decision-support tools. This led to the definition of a taxonomy to systematize and compare the methods with regard to factors of walkability, scale of analysis, attention on profiling, aggregation methods, spatialization and sources of data used for calibration and validation. The proposed systematization aspires to offer to non-specialist but competent urban analysts a guide and an orienteering, to help them integrate walkability analysis and evaluation into their research and practice

    Captive Breeding Programs Based on Family Groups in Polyploid Sturgeons

    Get PDF
    In species with long life cycles and discontinuous availability of individuals to reproduction, implementing a long-term captive breeding program can be difficult or impossible. In such cases, managing diversity among familiar groups instead of individuals could become a suitable approach to avoid inbreeding and increase the possibility to accomplish a breeding scheme. This is the case of several sturgeon species including the Adriatic sturgeon, whose recovery depends on the management of a few captive stocks directly descended from the same group of wild parents. In the present study, relatedness among 445 potential breeders was inferred with a novel software for pedigree reconstruction in tetraploids ("BreedingSturgeons"). This information was used to plan a breeding scheme considering familiar groups as breeding units and identifying mating priorities. A two-step strategy is proposed: a short-term breeding program, relying on the 13 remaining F0 individuals of certain wild origin; and a long-term plan based on F1 families. Simulations to evaluate the loss of alleles in the F2 generation under different pairing strategies and assess the number of individuals to breed, costs and logistical aquaculture constraints were performed. The strategy proposed is transferable to the several other tetraploid sturgeon species on the brink of extinction

    Cell starvation increases uptake of extracellular Thymosin β4 and its complexes with calcium

    Get PDF
    Cell metastasis is the main cause of cancer mortality. Inhibiting early events during cell metastasis and invasion could significantly improve cancer prognosis, but the initial mechanisms of cell transition and migration are barely known. Calcium regulates cell migration, whilst Thymosin β4 is a G-actin and iron binding peptide associated with tumor metastasis and ferroptosis. Under normal cell growth conditions, intracellular free calcium ions and Thymosin β4 concentrations are strictly regulated, and are not influenced by extracellular supplementation. However, cell starvation decreases intracellular Thymosin β4 and increases extracellular peptide uptake above the normal range. Unexpectedly, cell starvation significantly increases internalization of extracellular Ca2+/Thymosin β4 complexes. Elucidating the role of Ca2+/Thymosin β4 in the early events of metastasis will likely be important in the future to develop therapies targeting metastasis

    A pilot study of occupational exposure to ultrafine particles during 3D printing in research laboratories

    Get PDF
    Introduction3D printing is increasingly present in research environments, and could pose health risks to users due to air pollution and particulate emissions. We evaluated the nanoparticulate emissions of two different 3D printers, utilizing either fused filament fabrication with polylactic acid, or stereolithography (SLA) with light curing resin. MethodsNanoparticulate emissions were evaluated in two different research environments, both by environmental measurements in the laboratory and by personal sampling. ResultsThe SLA printer had higher nanoparticulate emissions, with an average concentration of 4,091 parts/cm(3), versus 2,203 particles/cm(3) for the fused filament fabrication printer. The collected particulate matter had variable morphology and elemental composition with a preponderance of carbon, sulfur and oxygen, the main byproducts. DiscussionOur study implies that when considering the health risks of particulate emissions from 3D printing in research laboratories, attention should be given to the materials used and the type of 3D printer

    UVB radiation induced effects on cells studied by FTIR spectroscopy

    Full text link
    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes in the absorbance and spectral pattern in the wavenumber protein and nucleic acids regions after the treatments

    Undercover Toxic Ménage à Trois of Amylin, Copper (II) and Metformin in Human Embryonic Kidney Cells

    Get PDF
    In recent decades, type 2 diabetes complications have been correlated with amylin aggregation, copper homeostasis and metformin side effects. However, each factor was analyzed separately, and only in some rare cases copper/amylin or copper/metformin complexes were considered. We demonstrate for the first time that binary metformin/amylin and tertiary copper (II)/amylin/metformin complexes of high cellular toxicity are formed and lead to the formation of aggregated multi-level lamellar structures on the cell membrane. Considering the increased concentration of amylin, copper (II) and metformin in kidneys of T2DM patients, our findings on the toxicity of amylin and its adducts may be correlated with diabetic nephropathy development

    Sensitivity Analysis of Grain Surface Chemistry to Binding Energies of Ice Species

    Get PDF
    Advanced telescopes, such as ALMA and the James Webb Space Telescope, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essential input information for gas‑grain models, such as binding energies of molecules to the surface, have been derived experimentally only for a handful of species, leaving hundreds of species with highly uncertain estimates. We present in this paper a systematic study of the effect of uncertainties in the binding energies on an astrochemical two-phase model of a dark molecular cloud, using the rate equations approach. A list of recommended binding energy values based on a literature search of published data is presented. Thousands of simulations of dark cloud models were run, and in each simulation a value for the binding energy of hundreds of species was randomly chosen from a normal distribution. Our results show that the binding energy of H2 is critical for the surface chemistry. For high binding energies, H2 freezes out on the grain forming an H2 ice. This is not physically realistic, and we suggest a change in the rate equations. The abundance ranges found are in reasonable agreement with astronomical ice observations. Pearson correlation coefficients revealed that the binding energy of HCO, HNO, CH2, and C correlate most strongly with the abundance of dominant ice species. Finally, the formation route of complex organic molecules was found to be sensitive to the branching ratios of H2CO hydrogenation

    Halogenated triazinediones behave as antagonists of PKR1: in vitro and in vivo pharmacological characterization

    No full text
    Different prokineticin receptor antagonists, based on the triazinedione scaffold, were synthesized by a new efficient method. Here we demonstrated that 5-benzyltriazinedionessubstituted in position para of the benzyl group with halogens provide compounds endowed with interesting selectivity for the Prokineticin receptor 1 (PKR1). BRET technology indicates that such substitutionresults in increased affinity for thePKR1.The affinity for PKR2, always in M range, was never significantly affected by the para-halogen-benzyl pharmacophores. The analog bearing a para-bromobenzyl pharmacophore (PC-25) displayed the highest affinity for PKR1 (~18 times higher than the reference PC-1 that bears apara-ethyl benzyl group) and the highest selectivity (~300 times). The other halogen substitutedanalogs (PC-7, PC-18 and PC-35), showed selectivity for PKR1 more than 100 times higher than for PKR2. Using transgenic mice lacking one of the two PKRs we demonstrated that all these compounds were able to abolish the Bv8-induced hyperalgesia in mice still expressing the PKR1 at doses lower than those necessary to abolish hyperalgesia in mice expressing only the PKR2. The dose ratio reflected the in- vitro evaluated receptor selectivity

    Toward the renal vesicle: Ultrastructural investigation of the cap mesenchyme splitting process in the developing kidney

    Get PDF
    Background: A complex sequence of morphogenetic events leads to the development of the adult mouse kidney. In the present study, we investigated the morphological events that characterize the early stages of the mesenchymal-to-epithelial transition of cap mesenchymal cells, analyzing in depth the relationship between cap mesenchymal induction and ureteric bud (UB) branching. Design and methods: Normal kidneys of newborn non-obese diabetic (NOD) mice were excised and prepared for light and electron microscopic examination. Results: Nephrogenesis was evident in the outer portion of the renal cortex of all examined samples. This process was mainly due to the interaction of two primordial derivatives, the ureteric bud and the metanephric mesenchyme. Early renal developmental stages were initially characterized by the formation of a continuous layer of condensed mesenchymal cells around the tips of the ureteric buds. These caps of mesenchymal cells affected the epithelial cells of the underlying ureteric bud, possibly inducing their growth and branching. Conclusions: The present study provides morphological evidence of the reciprocal induction between the ureteric bud and the metanephric mesenchyme showing that the ureteric buds convert mesenchyme to epithelium that in turn stimulates the growth and the branching of the ureteric bud
    corecore