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Abstract

In species with long life cycles and discontinuous availability of individuals to reproduction, implementing a long-term
captive breeding program can be difficult or impossible. In such cases, managing diversity among familiar groups instead of
individuals could become a suitable approach to avoid inbreeding and increase the possibility to accomplish a breeding
scheme. This is the case of several sturgeon species including the Adriatic sturgeon, whose recovery depends on the
management of a few captive stocks directly descended from the same group of wild parents. In the present study,
relatedness among 445 potential breeders was inferred with a novel software for pedigree reconstruction in tetraploids
(‘‘BreedingSturgeons’’). This information was used to plan a breeding scheme considering familiar groups as breeding units
and identifying mating priorities. A two-step strategy is proposed: a short-term breeding program, relying on the 13
remaining F0 individuals of certain wild origin; and a long-term plan based on F1 families. Simulations to evaluate the loss of
alleles in the F2 generation under different pairing strategies and assess the number of individuals to breed, costs and
logistical aquaculture constraints were performed. The strategy proposed is transferable to the several other tetraploid
sturgeon species on the brink of extinction.
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Introduction

Conservation management aimed at preserving the genetic

variability of wild populations is essential in preventing the

extinction of endangered species [1], [2]. Heritable genetic

variation is a prerequisite for the long-term survival of species

since the rate of evolutionary change able to occur in a group of

organisms depends on the amount of genetic variation present in

the gene pool; hence, organisms exhibiting low levels of genetic

variability will show an impaired evolutionary potential to face

future environmental changes [3]. Given the imminent risk of

extinction of most critically endangered species and the low

number of reproductive populations available in nature, in situ
conservation efforts (e.g. translocation, breeding in a protected

area of wild habitat, supplementary feeding) are often not sufficient

to reduce or prevent the effects of anthropogenic and stochastic

threats [1]. Therefore, conservation activities must frequently rely

on ex situ conservation through breeding of captive individuals [1],

[3], [4], [5], [6].

Captive breeding has long played an important role in the

conservation of threatened and endangered species and generally

involves two basic principles. The first one is the complete genetic

characterization of all breeders available in captivity in order to

quantify the amount of genetic variation and to assess the purity of

the stocks. Typically, captive stocks contain only a fraction of the

original genetic variability present in the larger wild population. A

second goal aims at retaining and transmitting most of the residual

genetic diversity to the future generations of captive breeders, thus

securing the long-term future of the species [7], [8].

In this regard, pedigree-based management practices are used

to identify candidate breeders, i.e. the ‘‘breeders unit’’, for the

production of the future generations [9], [10]. Evidences from

empirical studies suggest that the best strategy to retain gene

diversity is to minimize average kinship when pairing individuals

[11]. Therefore, an accurate pedigree of the captive breeders is

critical, together with information on the relatedness among the

original founder population, although in most captive programs

founders are assumed to be equally unrelated (e.g. ‘‘founder

assumption’’) [5]. Due to their high variability, microsatellites are

the most adequate marker of choice for parentage assignment in

animal conservation [2], [5], [12].

Among fishes, the need of establishing long-term captive

programs is especially urgent for sturgeons, which according to

the recent report (March 2010) of the International Union for
Conservation of Nature (IUCN) are the most threatened group of

species in the world, with 85% of sturgeons being at risk of

extinction (http://www.iucnredlist.org). The decline of sturgeon

populations is mostly attributed to human activities, including

overexploitation for the harvesting of caviar, habitat degradation,

damming of rivers and poaching [13], [14]. So far, recovery

actions have been based on supplementation of natural popula-
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tions with juveniles produced in captivity from wild breeders.

However, for several species/populations the low availability of

wild animals makes the retention of part of the fingerlings

produced necessary to be used as future breeders [15]. Some

particular life-characteristics of sturgeons (i.e. slow growth, late age

at maturity, 2-years or more resting stage between reproductions)

complicate breeding plans as selected individuals might not be

available when needed for reproduction. Moreover, sturgeons

show high juveniles mortality, which might translate into different

number of retained fingerlings from each reproduction that

reaches maturity. This can result in broodstocks composed by

different familiar groups with unbalanced sizes. Consequently, in

the absence of pedigree information, the risk of mating close

relatives can be high, thus increasing relatedness and distorting

founder diversity [8].

With the aim of proposing adequate approaches for the

management of broodstocks composed by familiar groups that

differ in size and genetic composition, we focused on the Adriatic

sturgeon (Acipenser naccarii), an endemism of the Adriatic region.

Given its tetraploid status [16], we also aim at developing

adequate tools for the management of tetraploid genetic data in

pedigree-based breeding programs.

The Adriatic sturgeon has been listed by IUCN since May 2010

as ‘‘critically endangered’’ and possibly extinct in the wild (IUCN

2012). A breeding program was initiated in 1977 with the transfer

of ca. 50 immature wild individuals (F0) to the private aquaculture

plant Azienda Agricola V.I.P. (Orzinuovi, Brescia, Italy). Since the

late 1980s, following the first successful reproduction in captivity

[17], several F1 broodstocks have been established from randomly

paired F0 breeders. Over 250,000 juveniles have been reintro-

duced in the last 25 years, and although recaptures have been

occasional, up to now there is no evidence of natural reproduction.

Therefore, the F0 stock at the V.I.P. aquaculture plant, currently

reduced to 13 individuals, represents the only living animals of

unequivocal wild origin. All Adriatic sturgeons reared in Europe

directly descend from this limited stock. The recovery of the

Adriatic sturgeon depends mostly on the management of F1

captive stocks that have now reached sexual maturity.

In the present study, we used a pedigree-based approach to

conduct the characterization of the stocks available at the Azienda

Agricola V.I.P. Plant, including (1) all remaining individuals of the

parental F0 stock, and (2) a large number of F1 individuals

retained from many breedings performed in the facilities during

the last 30 years. After pedigree reconstruction using a new

allocation program specific for tetraploid species (‘‘BreedingStur-
geons’’), candidate breeders were identified. A breeding plan was

then designed based on family groups as breeding units. The

rationale of using families rather than individuals is based on the

fact that selected individuals might not be available for reproduc-

tion when needed due to the particular complex life history traits

of sturgeons (i.e. they reproduce every other year), but related

individuals might be available instead. Our breeding program was

also supported by simulations in order to estimate the loss of

genetic diversity under different scenarios as well as to evaluate the

sustainability of the plan from an economic and logistic point of

view. The present approach can also be applied to many other

species of sturgeons whose recovery depends on the establishment

of ex situ strategies based on captive broodstock.

Materials and Methods

Sample collection and DNA extraction
The University of Padova ethic board C.E.A.S.A. (Comitato

Etico di Ateneo per la Sperimentazione Animale) exempted this

study from review because it was an extra moenia activity.

Nevertheless, we tried to minimize the impact of sample collection

on the animals. All samples were collected in aquaculture facilities

by the owners. Fish were kept into the pond water to minimize

stress and were released immediately after sample collection,

which consisted of painless clippings from the caudal fin. No

mortality, pain or stress was observed.

We analyzed a total of 42 individuals from the parental stock

F0, already genotyped at 24 microsatellite loci [10]. All analyses

were conducted considering the full data set (referred as Wild;

N= 42) and considering only those individuals alive at present

(referred as Wild-Alive, N= 13).

We also analyzed 445 F1 individuals. In July 2003, about half of

the F1 individuals died due to a poisoning incident and only 233

animals survived. All analyses were conducted considering the full

F1 data set (F1, N= 445) and considering those F1 alive at present

(F1-Alive, N= 233).

Our analysis also includes 133 individuals from the Ticino River

Park in Italy for comparison. This individuals are part of a stock

established from a very limited number of breeders [18].

Genomic DNA was extracted from fin-clip (10–100 mg) using

the DNA Easy Tissue Extraction Mini Kit (Euroclone) and stored

at 24uC.

Mitochondrial analysis
Prior to the analysis, species status of all individuals was assessed

using mitochondrial DNA haplotypes plus species-specific SNPs at

the S7 and Vimentin genes [19]. Amplification of the mitochon-

drial control region (d-Loop) was performed for all individuals

using the primer pair PRO1F-PHE1R, following the standard

experimental conditions [10]. All PCR products were purified by

enzymatic reaction with ExoSAP-it (Usb) and sequenced at the

external service BMR Genomics using an ABI Prism3730XL

automatic sequencer. A multi-alignment was created using

ClustalW in Mega5 [20] and a haplotype network was constructed

using TCS v. 1.13 [21] following the statistical parsimony

approach [22]. Genetic diversity was measured using haplotype

diversity (H) and nucleotide diversity (Pi) estimated from number

of segregating sites and from mean number of pairwise differences

using DnaSP software v. 5 [23].

Finally, in order to detect the presence of other species or

interspecific hybrids, the analyses of the mitochondrial control

region was supplemented with the scoring of species-specific SNPs

in two genes, the ribosomal Protein S7 and Vimentin, following

the approach developed in [19].

Microsatellite analysis
All F1 individuals were genotyped at 7 microsatellite loci: LS-39

[24], AnacE4, AnacC11, AnacA6 [25], An20 [26], AoxD234 and

AoxD64 [27], selected among the 24 loci that were originally used

to genotype the F0 stock [10]. In case of multi-allocations (when

more than one parent pair resulted compatible), 3 additional

microsatellite loci were genotyped, An16 [26], AoxD241 and

AoxD161 [27]. Microsatellite loci were amplified following the

conditions reported in the original references. Microsatellite

scoring was performed using GeneMapper software version 1.95

(Soft Genetics LLSR). The interpretation of microsatellite patterns

in tetraploids is not straightforward due to the presence of multiple

alleles at each locus that can be present in more than one copy,

thus the true genotype cannot be accurately resolved. As an

alternative, we used the classic band-sharing approach as proposed

in [10] which considers presence/absence of bands, disregarding

the number of alleles present in each individual. Data from all

microsatellite loci were combined by creating individual profiles

Family-Based Breeding Plan in Sturgeons
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where bands were coded as a string of 0 s (absent) and 1 s

(present). Band sharing (BS) between individuals was used as a

measure of similarity. Pairwise genetic distances were calculated as

1-BS. Number of alleles at the different loci was used to compare

F1 and F0 stocks and to evaluate the efficiency of allele

transmission.

Pedigree reconstruction
A new software (‘‘BreedingSturgeons’’) was implemented to

estimate an allocation compatibility index for each F1 individual

to all possible parent pairs in the F0 stock, assuming a tetrasomic

mode of inheritance with no dominance [28].

For all possible pairs of putative males and females in the F0

stock and the F1 individuals, we inferred all possible tetraploid

genotypes compatible with the observed microsatellite profiles at

all loci. We defined a single locus compatibility index, ci(x), of an
individual to a putative parent pair as: ci(x) =g[A(p1)+A(p2)]/4,
where A(pi) is the number of alleles that could have been inherited

from parent-i. A(pi) can vary between 0 (if no allele present in

parent i is seen in the possible tetraploid genotypes inferred for the

F1 individual) and 2 (if 2 alleles could have been transmitted from

that parent to the F1 individual). And ci(x) can vary between 0 and

1. Multi locus estimates of compatibility indexes were obtained as

average across all microsatellites loci. In this procedure the

following assumptions must be satisfied: a) all the offspring alleles

should be shared with the parental pair, b) two of the offspring

alleles must be shared with the mother and two with the father, c)

a complete heterozygote can not transmit two copies of the same

allele. The above conditions should be satisfied by at least one of

the inferred genotypes in the two parents and in the offspring.

Each F1 individual was allocated to the parent pairs associated

with a compatibility index above a threshold (0,857) chosen to

account for possible genotyping errors at one locus.

Individuals that could not be assigned to any parent pairs (not-

allocated) probably represent the progeny of wild F0 individuals

died before the characterization of the F0 stock. All individuals

allocated with a compatibility index higher than the threshold

value were checked for mitochondrial concordance with the

putative mother.

We also used the program to test the power of the set of 7

microsatellite loci used for parental allocation. To do so, we

generated 1,000 virtual F1 profiles from the F0 individuals. We

identified the allocation power of our microsatellite panel as the

fraction of virtual F1 profiles unequivocally allocated back to the

correct parental pair.

In order to identify closely related individuals (full-sibs or half-

sibs) among not-allocated animals, distributions of pairwise genetic

distances between full- and half-sibs were created and threshold

values under which 99% of comparisons between animals with a

given degree of relatedness were identified [10]. The threshold

values estimated for our panel of loci (0.58 for sibs and 0.66 for

half-sibs) were applied to the distance matrix between F1

individuals to identify putative groups of related individuals.

Breeding strategy
A ‘‘whole-family’’ approach (rather than a single-breeder

approach) was used. The parent pair of each family was

considered to be representative of the genetic diversity of the

corresponding progeny. This allowed using a higher amount of

genetic information since all the F0 individuals are genotyped at

24 loci [10]. Accordingly, the genetic distance between two

families is represented by the genetic distance between the two

cumulative parental profiles.

In the case of families with unknown pedigree, estimation of

genetic distances from the cumulative profile of parents was not

possible. In these cases, parental profiles were inferred cumulating

the phenotypes of their offspring using the 7 loci genotyped for

parental allocation analysis. Genetic distances estimated on these

partial profiles were included in the matrix after observing a

significant positive correlation (r = 0,770; p,0.001) between

distances estimated at 24 and 7 loci by using the Mantel test

implemented in PopTools [29].

The strategy proposed for the breeding plan is based on the

following three criteria: (a) prioritize families with higher genetic

value, (b) exclude crosses between families with a shared parent

and (c) avoid already-performed crosses. Priority of the different

families (named ‘‘priority families’’) for reproduction was estimated

based on how often the parents of each family were already

represented in the F1 ‘‘breeders unit’’. This value was estimated by

averaging the number of progeny of the two parents across all the

families in the ‘‘breeders unit’’. In this way, the smallest families

with under-represented parents were the first to be selected for

reproduction. The above values were then converted into an

ordinal scale (‘‘priority’’). Following the established order, each

priority family was then paired with the more distant one (named

‘‘mating family’’) selected from among all of the families available

in the ‘‘breeders unit’’.

With the aim of excluding crosses between half-sibs families,

starting from the F0 profiles at 24 loci, all the possible

combinations of virtual families (cumulative profiles) sharing one

parent were created and the pairwise genetic distances estimated.

The highest distance observed (0.35) was used as threshold value to

exclude all crosses involving a shared parent. In the selection of the

mating families we imposed the constraint that each mating family
could not be crossed with more than 3 priority families.
Consequently, the maximum number of crosses in which a given

family can be involved is 4 (3 as ‘‘mating family’’ and 1 as ‘‘priority
family’’). This choice was necessary to avoid that some families

with a high genetic distance from many others were used in too

many crosses. This process was implemented in the R software

‘‘BreedingPlanSturgeons’’ also used to compare the different

pairing strategies described in the following paragraph.

For the families whose parents were unknown, the information

at 7 loci was used, which yielded a threshold value of 0.45. These

families were excluded from the automated analyses and for each

of them the more distant ‘‘mating family’’ was manually identified

and a single cross suggested.

Simulations
A first R-script, ‘‘CostsBreedingSturgeons’’ (script available as

additional material), was developed to infer the number of crosses

that can be simultaneously performed in a given hatchery. It

includes the estimate of costs and yields of a given breeding

program based on the number of individuals generated and reared

until release. It also considers that at the beginning of the third

year (after tagging of all individuals), a fraction of the individuals

are retained in the facilities in order to preserve the captive stock,

while the rest of individuals can be released into the wild.

We took into consideration the following constraints: number of

individuals that can be induced every year, availability of ponds for

rearing families separately until tagging and maximum number of

animals that can be hosted. We also considered biological features

(e.g. mortalities and growth rates at different life stages) and costs

(e.g. reproductions, food, tagging, manipulation, overheads) in

order to estimate the total financial cost of the project. Additional

variables are reported in Table A in File S1. Logistic factors can be

modified according to the capacities of the different hatcheries and
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the biological features of the species under consideration. In our

example, the different variables were based on the ‘‘Storioni

Ticino hatchery’’ located in Cassolnovo (Pavia, Italy), where the

F1 V.I.P. Stock will be maintained in the future. The run was

performed assuming six tanks available for the first two years of

rearing and a common pond of 1,200 square meters for the

following years. Biological parameters such as average female

fecundity (30,000 eggs), hatching rate (50%) and mortalities rates

in the first (87%), second (66%) and following years (10% every

year) were based on personal communication by the V.I.P.

owners, who have more than 20 years of experience in the

reproduction of Adriatic sturgeon in aquaculture.

A second R-script, ‘‘BreedingPlanSturgeons’’ (also available as

additional material), was developed to estimate the expected

fraction of alleles of the F1 stock that are successfully transmitted

to the progeny under different breeding strategies. To this

purpose, the program ‘‘BreedingSturgeons’’ (previously described

and used for parental allocation) was applied to generate a virtual

F2 progeny from the observed F1 microsatellite phenotypes. The

minimum number of individuals to be crossed in order to ensure

the transmission of all F1 alleles was estimated. Based on the order

of the ‘‘priority families’’, four different scenarios were simulated in

which the ‘‘mating families’’ were chosen by ‘‘Maximum

Distance’’, selecting 1, 2, 3 or 4 individuals per family (variables

‘‘nInd.Prior’’ and ‘‘nInd.inc’’ in Table B in File S1). For each

scenario, 100 replicates (variable ‘‘nRep’’ in Table B in File S1)

were performed and the mean cumulative number of alleles

successfully transmitted was counted.

Once the optimal number of individuals per family was fixed,

we also tested three alternative strategies to select and pair families:

random selection of both paired families (Random – Random) vs.

priority order of the first family with ‘‘mating family’’ selected at

random (Priority – Random) or with ‘‘mating family’’ selected for

having the higher genetic distance (Priority – Maximum distance).

The process of random selection of the ‘‘mating family’’ was

repeated 100 times for each ‘‘priority family’’ and for each

resulting combination breeders were randomly extracted from the

two families. Also the extraction of the breeders was repeated 100

times for each family to minimize possible effects of differences due

to intra-family diversity. Finally, from each virtual cross, 20

fingerlings (variable ‘‘nSons’’ in Table B in File S1) were generated

and the total number of alleles counted. The total number of

alleles successfully transmitted during the process was averaged

among replicates and used to compare the different pairing

strategies. The choice of generating 20 virtual individuals is

consistent with the number of animals that will be retained in

captivity as future breeders from each reproduction.

In all the above simulations, the sex of animals of the ‘‘breeders
unit’’ was not considered since this information was not available.

Moreover, all families for which less than 24 loci were genotyped

were excluded from the simulations. For the above simulations

RStudio was used.

Results

Genetic diversity
Prior to the analysis, species status of all individuals was assessed

using mitochondrial DNA haplotypes (Table 1) plus species-

specific SNPs at the S7 and Vimentin genes. In total, two hybrids

were identified (one hybrid white sturgeon female 6 Adriatic

sturgeon male and one hybrid Adriatic sturgeon female 6 white

sturgeon male) and were consequently removed from the analysis.

The number of individuals showing each haplotype in the two

stocks (F1/F1-alive) were: 0/0; 118/53, 220/106, 0/0, 75/45, 4/

T
a
b
le

1
.
M
it
o
ch
o
n
d
ri
al

d
iv
e
rs
it
y
in
d
ic
e
s.

S
a
m
p
le

N
S

S
i

H
H
d

h
w

h
p

W
il
d

4
3
*

1
3

3
7

0
.7
8
3

0
.0
0
4

0
.0
0
6

W
il
d
-A

li
v
e

1
3

9
0

4
0
.7
4
4

0
.0
0
4

0
.0
0
6

F
1

4
4
3

1
0

0
5

0
.6
6
5

0
.0
0
2

0
.0
0
2

F
1
-A

li
v
e

2
3
0

1
0

0
4

0
.6
8
1

0
.0
0
2

0
.0
0
2

D
iv
e
rs
it
y
in
d
ic
e
s
fo
r
al
l
sa
m
p
le
s
in
cl
u
d
in
g
n
u
m
b
e
r
o
f
in
d
iv
id
u
al
s
(N
),
n
u
m
b
e
r
o
f
se
g
re
g
at
in
g
si
te
s
(S
),
n
u
m
b
e
r
o
f
si
n
g
le
to
n
s
(S

i),
n
u
m
b
e
r
o
f
h
ap

lo
ty
p
e
s
(H
),
h
ap

lo
ty
p
e
d
iv
e
rs
it
y
(H

d
),
n
u
cl
e
o
ti
d
e
d
iv
e
rs
it
y
e
st
im

at
e
d
fr
o
m

n
u
m
b
e
r
o
f

se
g
re
g
at
in
g
si
te
s
(h

w
)
an

d
n
u
cl
e
o
ti
d
e
d
iv
e
rs
it
y
e
st
im

at
e
d
fr
o
m

m
e
an

n
u
m
b
e
r
o
f
p
ai
rw

is
e
d
if
fe
re
n
ce
s
(h

p
).
Sa
m
p
le
s
in
cl
u
d
e
th
e
o
ri
g
in
al
p
ar
e
n
ta
lF
0
st
o
ck

(W
ild

),
th
e
cu
rr
e
n
t
F0

st
o
ck

(W
ild

-A
liv
e
),
th
e
fu
ll
F1

d
at
a
se
t
e
xc
lu
d
in
g
th
e
tw

o
d
e
te
ct
e
d
h
yb

ri
d
s
(F
1
)
an

d
th
o
se

F1
al
iv
e
at

p
re
se
n
t
(F
1
-A
liv
e
).
*I
n
cl
u
d
e
s
o
n
e
h
e
te
ro
p
la
sm

ic
fe
m
al
e
th
at

w
as

co
n
si
d
e
re
d
as

tw
o
fe
m
al
e
s
w
it
h
d
if
fe
re
n
t
h
ap

lo
ty
p
e
s.

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
1
1
0
9
5
1
.t
0
0
1

Family-Based Breeding Plan in Sturgeons

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e110951



0, 37/23 for haplotype 1 to 7 respectively. A total of 11 individuals

(one female F0 and 10 of its progeny) were heteroplasmic,

presenting a double peak in the chromatogram sequence, and

were counted as two different haplotypes for the analysis. When

comparing genetic diversity across generations (Table 1), the F1

sample showed a decrease in haplotype diversity (F1: H= 0.67; F1-

Alive: H= 0.68) compared to the parental stock of wild origin

(Wild: H= 0.78; Wild-Alive: H= 0.74). Two out of the 7 original

F0 haplotypes [19] were lost (hapl-1 and hapl-4) due to the

random selection of mating pairs, while a third haplotype was lost

after the 2013 poisoning event. Similarly, nucleotide diversity

declined significantly when comparing the F0 and F1 samples,

with dropping from 0.006 to 0.002.

Measures of genetic diversity at microsatellite loci are detailed in

Table 2. Number of alleles ranged from 8 to 14 across loci in the

wild population. A drop in the average number of alleles was

observed when comparing the original Wild and the Wild-Alive

(F0) stock, from 10.29 to 8.29. However, the F1 stock showed

similar allele numbers in comparison with the original F0 stock (10

before poisoning; 9.86 after poisoning). The lowest average

number of alleles (8.57) was observed in the F1-Ticino stock

reared at the Ticino River Park. It is worth noting that some of the

alleles observed in the F1 stocks were not observed in the F0

generation.

Parental Allocation
Prior to the parental allocation analysis, the power of the

markers was assessed using 1,000 virtual F1 individuals. Using the

7 microsatellite set, a correct assignment of 92% was observed.

Hence, we can consider the set of microsatellites to be informative

enough for parental allocation procedures.

Parental allocations at 7 microsatellite loci for all the F1_V.I.P.

individuals (N=445) are summarized in Table C in File S1,

including mitochondrial haplotypes used to solve ambiguities in

case of multiple parental allocations. In total, 382 out of 445

individuals were successfully assigned to a single parent pair (30

families). No multi allocations were observed, which confirms the

high resolution power of the markers. No discrepancies were

observed between mitochondrial haplotypes and parental alloca-

tions. The remaining 63 individuals were not-allocated to any of

the possible F0 parent pairs. However, four groups of full-sibs with

different mitochondrial haplotypes were detected: Fam-unknownA

(haplotype 3, 23 individuals), Fam-unknownB (haplotype 5, 4

individuals), Fam-unknownC (haplotype 2, 11 individuals) and

Fam-unknownD (haplotype 6, 4 individuals). In total, the stock is

composed of 30 families with known pedigree and at least 4 not-

allocated families. Comparison of the F1 and F1-Alive stocks

(Table C in File S1) showed the loss of few families, so that the F1-

Alive stock is composed of 27 families of known pedigree and 3

not-allocated families (A and C were reduced to 11 and 5

individuals, respectively; B was unchanged; D was lost).

Short-term breeding scheme (F06F0)
A short-term breeding plan including the 13 F0 individuals still

alive at present (7 males, 6 females) was designed after evaluation

of the genetic relatedness of the individuals (Fig. 1). We aimed at

having the contribution of each remaining F0 breeder in at least

three families within the F1 generation. Mating pairs were selected

among the more distant males and females based on the pairwise

genetic distances at 24 loci (Fig. 1), trying to maximize the number

of parents represented, with the minimum number of crosses.

Following this strategy, 18 crosses were selected as priority (Fig. 1),

among which only one was already present within the F1 stock

with a limited number of individuals.

Long-term breeding scheme (F16F1) and selection of
candidate breeders
The long-term plan was designed based on the F1 progeny,

using a family-based approach. A total of 32 crosses was planned,

one for each of the 32 families that composed the ‘‘breeders unit’’:
30 reared at V.I.P. (27 allocated and 3 not-allocated) plus two

families from the Ticino River Park (1 allocated and 1 not-

allocated). Pairwise genetic distances among families are shown in

Fig. 2, together with details on recommended crosses and those

crosses to be avoided (distance values ,0.35 for 24 loci and ,0.45

for 7 loci).

In the case of 4 not-allocated and 2 allocated families, generated

by a single F0 female (reported in Fig. 2 as ‘‘Indecisa’’) whose

sample was accidentally loss, a reliable estimation of the genetic

distances with the rest of families could not be achieved since they

were only genotyped at 7 loci. Thus, these families were excluded

from next simulations and only one cross was considered in order

to guarantee their contribution to the next generation.

Table 2. Number of alleles per locus in the different stocks and average band sharing (BS) values at 7 microsatellite loci.

Locus
Wild
(N=42)

Wild–Alive
(N=13)

F1
(N=443)

F1-Alive
(N=231)

F1-Ticino
(N=133)

LS-39 8 8 8/1 8/0 7/0

AoxD64 9 8 9/1 9/1 9/0

AnacE4 10 7 10/3 10/3 8/0

AnacC11 11 7 9/1 9/1 8/0

AoxD234 14 12 14/0 14/0 13/0

An20 11 9 11/1 11/0 8/2

AnacA6 9 7 9/0 8/0 7/0

Mean 10.29 8.29 10/1 9.86/0.71 8.57/0.29

BS 0.40 0.39 0.45 0.45 0.50

Samples include the original parental F0 stock (Wild), the current F0 stock (Wild-Alive), the full F1 V.I.P. data set (F1) and those F1 alive at present (F1-Alive). For the F1
stocks, the values presented correspond to alleles shared with the F0 generation and newly observed alleles, respectively. Detected hybrids were excluded from the
analysis.
doi:10.1371/journal.pone.0110951.t002
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Breeding plan simulations
Results obtained from the simulations using the script

‘‘CostsBreedingSturgeons’’, including inference of how many

animals can be hosted in the facilities and released in the wild,

as well as total costs of the project, are shown in Fig. 3.

Considering 6 ponds available at the facilities of Cassolnovo,

where the progenies will be produced and reared, three crosses per

year are feasible, which corresponds to about 45.000 larvae per

year (15.000 per female). Induction of fish is not straightforward

but assuming to induce 5 males and 5 females per cross, at least

one successful reproduction is expected. Number of individuals at

the 2nd year dropped to ca. 6.000 individuals (Fig. 3a) after

assuming a 86.7% mortality.

In order to save pedigree information, fingerlings produced by

different family combinations should be kept separated for the first

two years (until tagging). At the start of the 3rd year, after tagging,

the progeny is split into a fraction that is retained in a common

tank with all other families to preserve the captive broodstock and

a fraction that can be released into the wild. On the basis of a 10%

yearly mortality, ca. 140 individuals are retained (Fig. 3a) in order

to have an average of 20 individuals per family at the 10th year of

age. These individuals will constitute the ‘‘captive population’’ to

be kept in the facilities as an ‘‘insurance policy’’ for the species.

The remaining individuals (ca. 1.850) can be released into the wild

(Fig. 3b). Finally, estimated costs are detailed in Fig. 3c, including

costs generated by induction, maintenance and tagging of the

individuals as well as total annual amount required for the

breeding plan.

Results from simulations using the script ‘‘BreedingPlanStur-
geons’’ to estimate the optimal number of breeders are presented

in Fig. 4a, in which the cumulative number of alleles transmitted

to the progeny is reported for different number of breeders. The

fraction of alleles from the F0 generation that are successfully

transmitted to the F2 is 100% when crossing either 2, 3 or 4

individuals per family. Only when crossing 1 single individual the

transmission of alleles is not complete. The best strategy appears to

be the use of 3 individuals, since the use of 2 individuals performed

worst in the short-them, when the number of crosses was low.

Finally, results from simulations conducted to compare three

alternative mating strategies are shown in Fig. 4b. While the rate

of allele transmission was similar across mating strategies, both

methods in which at least one family could be selected by chance

(‘‘Priority-Random’’ and ‘‘Random-Random’’) showed larger

standard deviations than the ‘‘Priority-Maximum Distance’’

method, particularly when the number of crosses was low,

suggesting than the latter is the most conservative mating strategy.

Figure 1. F0 breeding plan. Distance matrix at 24 microsatellite loci between the current F0 stock (Wild-Present) individuals. The already-existing
families generated by each F0 parent and represented by at least 10 animals were counted (ScoreA). ScoreB represents the number of crosses per F0
that should be planned in order to get at least three families per breeder in the F1 generation (ScoreA+B). Only crosses between males and females
are selected. Cells highlighted in grey indicate crosses selected for the short-term breeding plan on the basis of ScoreA and ScoreB.
doi:10.1371/journal.pone.0110951.g001

Figure 2. F1 breeding plan. Pairwise distances among the families of the ‘‘Breeders Unit’’ estimated by comparing the cumulative profiles of the
parent pairs. The black frame includes distances estimated at 24 loci and excludes the ones based on 7 loci only. Light grey and dark grey cells
represent crosses to be avoided based on threshold values of 0,35 (at 24 loci) and 0,45 (at 7 loci), respectively. Black cells represent selected crosses
identified by the software ‘‘BreedingPlanSturgeons’’ (within the black frame) or by visual inspection (for the families marked with V.I.). N = number of
individuals per family.
doi:10.1371/journal.pone.0110951.g002
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Discussion

We present the first breeding plan for the Adriatic sturgeon, a

species which is believed to be possibly extinct in nature and whose

future entirely relies on the implementation of an ex situ captive

breeding plan based on genetic and demographic information

upon which to establish management decisions. The program here

proposed meets the two principals generally required in captive

breeding: (i) the complete genetic characterization of all the

individuals and (ii) the planning of a breeding scheme that

minimizes genetic relatedness in order to maximize genetic

variability. One particular characteristic of our breeding plan is

that is ‘‘family-based’’ in contrast with most breeding plans that

are ‘‘individual-based’’. One of the difficulties when working with

sturgeons is that adults are only reproductively active every other

year or more rarely. This represents a serious problem since a

selected individual might not be available for reproduction when

needed. However, this problem can be avoided by using a family

rather than a single individual approach, so that related

individuals might be available instead.

Figure 3. Example of output of the R-script ‘‘CostsBreedingSturgeons’’. The run was performed using six tanks available for the first two years
of rearing and one common pond of 1200 mq for the following years. (a) Number of individuals for each cohort (columns) maintained in captivity in
the different years (lines). (b) Individuals that can be released per year. (c) Annual costs.
doi:10.1371/journal.pone.0110951.g003

Figure 4. Simulations of allele inheritance under different strategies. Results of the simulations performed using the R-script
‘‘BreedingPlanSturgeon’’ to test: (a) the optimal number of breeders per family and (b) alternative strategies for the mating choice. The cumulative
percentages of transmitted alleles are averaged on 100 replicates and reported with the corresponding standard deviation. In figure b, 3 individuals
per family were crossed and standard deviation bars are shifted downwards for better visibility.
doi:10.1371/journal.pone.0110951.g004
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Characterization of the F1 V.I.P. stock
Pedigree reconstruction was applied to characterize the F1 stock

retained at the V.I.P. plant and produced by crossing F0

individuals in the last 20 years. The approach implemented by

the new software (‘‘BreedingSturgeons’’) and based on the

inference of all possible genotypes compatible with observed band

profiles, showed a higher allocation efficiency compared with the

simple band sharing approach [10]. Accordingly, all ambiguities

were completely solved with no F1 individual being multi-

allocated. Comparison of genetic variability between the original

F0 (Wild) and the F1 stock showed a relatively important loss of

genetic diversity at the mitochondrial level, with 2 of the 7 original

haplotypes being absent in the F1 stock before poisoning and a

third one lost in the F1-alive group. However, at microsatellites,

genetic diversity appears to be almost intact as no significant

differences in number of alleles were observed between F0 and F1,

with both samples presenting an average number of alleles per

locus of about 10. By contrast, a lower value of 8.57 was reported

for a different F1 stock of Adriatic sturgeon retained as possible

future broodstock at the Ticino River Park [18]. The Ticino F1

stock was established without any genetic input and the animals

were collected from a limited number of reproductions, causing a

significant erosion of genetic diversity in a single generation, as

exemplified by a 16.7% loss in average allele number in

comparison with the F0 stock.

In synthesis, the V.I.P. Stock resulted to be the major source of

variability for this species. Several families were identified and a

great part of the F0 parents are represented within the stock. In

regards to the relationships among animals, the probability to

select for reproduction two related individuals by chance is very

low (5,6%), compared to the 35% estimated for the stock reared by

the Ticino River Park [18]. However, even if the use of Ticino F1

stock as ex situ broodstock is not advisable, this stock includes some

families that are absent or under-represented in the V.I.P. plant, so

exchange of individuals between plants should be encouraged.

Finally, our results also show how important is to test for the

presence of hybrids or alien species. In many aquaculture facilities,

different species or interspecific hybrids are reared, so that mixing

of individuals can accidentally happen, and those can go

unnoticed unless properly tested. In our case, two reciprocal

hybrids between Adriatic and White sturgeon were found within

the F1 progeny. As expected, hybrids showed microsatellite alleles

not present in the A. naccarii F0 gene pool but these are not the

only new alleles detected. Additional alleles not present in the

parental generation were also found among not-allocated F1

individuals. The presence of new alleles in the F1 might be

explained by inheritance from F0 breeders that died several years

ago and are not present in our sample. Alternatively, F1

individuals carrying new alleles might be hybrids produced in

the hatchery and accidentally mixed into the stock. Accordingly,

accepting the risk of losing rare variants we chose to exclude from

the broodstock all the animals carrying extra alleles.

Is a short-term breeding plan still possible?
In the case of the Adriatic sturgeon, recruitment of new

breeders from the wild is not possible since the species is possibly

extinct in nature, so a breeding plan using wild breeders can only

be achieved using the original F0 brought to the V.I.P. facilities in

1977. However, the F0 stock at the V.I.P. plant has been greatly

reduced in size in recent years, probably due to senescence. While

only 13 individuals remain at present, we propose a priority short-

term breeding program to be attempted with these remaining F0

individuals. The plan includes 6 females and 7 males for a total of

18 selected crosses on the basis of pairwise genetic distance (Fig. 1).

It should be noted that most of the remaining individuals had

never been mated before, so that their successful reproduction

would represent a relevant contribution to the future diversity of

the captive stock of this species. Nevertheless, the fact that some

animals have never been crossed in over 20 years of reproduction

events might indicate a low reproductive potential. Hence, there is

a chance that the proposed crosses between the surviving F0 adults

might not be successful, and although we believe that a short-term

plan using F0 should be attempted, most efforts should be

conducted to the establishment of the long-term plan involving the

F1 generation.

A long-term breeding plan to safeguard the Adriatic
sturgeon
We present a complete long-term breeding plan based on

familiar groups that aims at generating enough animals to

ultimately allow for the re-introduction of the species back into

its natural environment. Considering the low chances of successful

reproduction of these animals and their limited number, most

efforts were devoted to developing a long-term breeding strategy

involving families of F1 generation, assuming that at least some of

the individuals are reproducible every year.

The program starts with the exclusion of combinations between

families sharing one parent, together with families that do not

share any parent but show low genetic distances, which might be

indicative of relatives. This allows minimizing possible errors due

to the ‘‘founder assumption’’, in which wild founders of a captive

population are assumed to be equally unrelated [30], although it

might not always be the case.

Our choice of keeping separated for two years the animals

produced by different family combinations, until the moment of

tagging, limits the number of crosses that can be simultaneously

performed with a finite number of ponds. However, it allows

tracking the pedigree of every single animal providing useful

information for monitoring the release program or for managing

the following generation of captive broodstock. Alternatively,

instead of crossing one individual per family, it could be

considered to cross more individuals of the same family that can

be pooled and do not require additional ponds. This would also

increase the efficiency of allele transmission and guarantee that all

F0 alleles of each family are inherited by the F2 generation, as

shown by simulations that suggest the use of at least 3 breeders

from the same family when possible. However, these numbers

might be not easy to reach given the small size of some families

and the discontinuous availability of breeders for reproduction

(mostly true for females). Moreover, if breeders of the ‘‘priority
family’’ are not available, one possibility is to postpone the cross

until the following reproductive season and to slightly modify the

priority order. If the unavailable individuals belong to the ‘‘mating
family’’, one possibility is to save the priority order and to select an

alternative ‘‘mating family’’, choosing the second more distant

family. As shown by simulations, selection of family combinations

based on priority and genetic distance were more efficient in

transmitting the higher possible number of alleles to the next

generation relative to the random strategies (‘‘Priority – Random’’

and ‘‘Random – Random’’). This was particularly true when

number of crosses was low, which suggests that random

approaches are not recommended for short-term programs. In

fact, the higher standard deviation of the two strategies in which at

least one family is randomly selected may result in a significant loss

of allele diversity after few generation of captive breeding.

Accordingly, the breeding plan here proposed was based on the

Priority – Maximum distance approach. On one side, the

establishment of a priority score allows to first cross those families
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whose genetic traits have the higher risk to be lost, since they are

shared by a lower number of individuals in the population. On the

other side, the use of maximum distance minimizes inbreeding and

tends to increase the number of crosses involving families that are

genetically peculiar, and consequently, are more often selected as

‘‘mating families’’.

Management implications
The present work represents the first breeding plan for the

Adriatic sturgeon based on its detailed genetic characterization

and can be considered as a reference guideline for all conservation

actions based on controlled reproductions of this species. As in the

case of Adriatic sturgeon, many other sturgeon species are

critically endangered with greatly reduced wild populations and

a consequent difficulty in collecting breeders from the wild. For

such species the establishment of ex situ conservation plans

through the retention of part of the fingerlings as future breeders is

the only way forward. In this context, the approach here

developed based on the management of familiar groups instead

of individuals can become of major interest. Moreover, for those

species that share with the Adriatic sturgeon the tetraploid

condition, such as the Russian sturgeon (A. gueldenstaedtii), the
Persian sturgeon (A. persicus), the Chinese sturgeon (A. sinensis)
and many others, the methods here optimized are directly

transferable. This would allow a careful identification of familiar

groups thus providing the basis for the establishment of breeding

programs that takes into account the genetic composition of the

available broodstock together with logistic and economic con-

straints.

Our study also showcases the importance of genetic approaches

to ex situ management for meeting conservation goals. The low

cost of microsatellite markers facilitates the collection of genetic

data that can inform breeding programs about the best pairing

individuals so as to minimize mean relatedness. In our study, as

few as 7 microsatellite markers were sufficient to unambiguously

allocate all F1 individuals. In the event of higher number of

putative parents, which might be the case in other sturgeon

species, the number of microsatellites should be increased to

ensure complete allocation.

Since genetic diversity is an essential prerequisite for the long-

term adaptive potential, the availability of ex situ genetically

heterogeneous broodstocks is the starting point for the rehabili-

tation of self-sustaining natural populations. However, in the short

run, the survival rate of the released fingerlings depends on their

capability do adapt to the target environment. In this sense, the

establishment of adequate rearing protocols aimed to produce

individuals with a high probability of survival is strongly

encouraged. As clearly reported in FAO guidelines for sturgeon

management and release [31], hatcheries involved in juvenile

production for restocking purpose should raise fry and juveniles

through training and adaptation to natural conditions, in order to

maximize their fitness for survival after release.

As important as it is to use genetic studies into conservation

practices, those need to be coordinated and not be carried out

separately and restrictively. In the case of the Adriatic sturgeon, at

present several local administrations are active in the attempt of

recovering the species in its historical natural range. Unfortunate-

ly, these actions are often represented by short-term programs and

are completely isolated and uncoordinated. Therefore, providing a

common program like the one presented in our study that can

connect and integrate the different actions would represent the

first step towards a responsible concerted management of the

Adriatic sturgeon. Finally, in order to implement successful

conservation strategies, important actions against habitat degra-

dation are urgently needed including the restoration of natural

spawning sites and the re-establishment of river connectivity (i.e.

fish passages at dams). A relevant challenge for conservation

genetics is to go beyond the scientific since reintroduction is not

merely a biological issue but a social, cultural and political one as

well. An important part of the framework required for the

successful incorporation of genetic data into conservation decision-

making of culturally-important species is involvement where

possible of local people in the program, together with public

education about the project.
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