9 research outputs found

    Neuroprotective effects of physical exercise: Implications in health and disease

    Get PDF
    Physical exercises have long been linked to numerous health improvements, ranging from cardiovascular to psychiatric. In this review, we take a closer look on its anatomical, physiological and chemical effects on the brain. Starting from the clinical to the cellular level, we will analyze the neurogenesis, anti-inflammatory effects on Brain-Blood Barrier and synaptic plasticity, outlining known molecular aspects that are influenced by physical activity, such as: gene expression, changes of growth factors and neurotransmitter levels and means of reverting molecular mechanisms of ageing. The brain derived neurotrophic factor (BDNF) is one of the central molecules that links the physical exercise to neurogenesis, neuroprotection, cognitive functions, dendritic growth, memory formation and many more. We indicate the correlation between physical activity and mental health in diseases like depression, Alzheimer’s dementia and Parkinson’s disease

    Vasorelaxant and blood pressure lowering effects of alchemilla vulgaris: A comparative study of methanol and aqueous extracts

    No full text
    Background: In the last decade, a growing interest particularly in determining the cardiovascular effects of herbal extracts took place among researchers. Objective: Herein, we aimed to investigate the microvascular and blood pressure lowering effects of two differently processed extracts of the same herb, Alchemilla vulgaris (Rosaceaea), which was revealed to contain high levels of vasoactive compounds. Materials and Methods: For the purpose, endothelium intact rat mesenteric arteries were mounted in a myograph system and contracted with prostaglandin F 2α (PGF 2α: 3 × 10−5 M) or potassium chloride (K + : 40 mM). Then, aqueous and methanol extracts were added at 0.01-10 mg/ml concentrations in a cumulative manner. Results: Both extracts produced relaxations in PGF 2α (3 × 10−5 M) precontracted arteries which were insensitive to the inhibitors of endothelium derived vasoactive substances namely, L G -nitro-L-arginine (10−4 M), ODQ (10−5 M) and indomethacin (10−5 M) or removal of endothelium. Opposite vascular effects were observed when extracts were applied in K + precontracted arteries. In addition, oral administration of the methanol extract of Alchemilla vulgaris, but not the aqueous extract, reduced blood pressure significantly in L-NAME hypertensive rats. Conclusion: Our results demonstrated that the methanol extract of Alchemilla vulgaris has more prominent and favourable vascular effects in normal and experimental hypertensive conditions reinforcing its traditional use in cardiovascular disorders, in particular hypertension. These results most likely give rise to further studies to reveal its mechanism of action and clinical value of this herb

    On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices

    No full text
    Photonic integrated circuits are developing as key enabling components for high-performance computing and advanced network- on-chip, as well as other emerging technologies such as lab-on-chip sensors, with relevant applications in areas from medicine and biotechnology to aerospace. These demanding applications will require novel features, such as dynamically reconfigurable light pathways, obtained by properly harnessing on-chip optical radiation. In this paper, we introduce a broadband, high directivity (4150), low loss and reconfigurable silicon photonics nanoantenna that fully enables on-chip radiation control. We propose the use of these nanoantennas as versatile building blocks to develop wireless (unguided) silicon photonic devices, which considerably enhance the range of achievable integrated photonic functionalities. As examples of applications, we demonstrate 160Gbits−1data transmission over mm-scale wireless interconnects, a compact low-crosstalk 12-port crossing and electrically reconfigurable pathways via optical beam steering. Moreover, the realization of a flow micro-cytometer for particle characterization demonstrates the smart system integration potential of our approach as lab-on-chip devices

    MicroRNAs’ role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration

    No full text
    corecore