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Abstract We investigate a sequential decision-making situation wherein, with a cer-
tain probability, each voter imitates the decision of another voter who has already
made a decision; otherwise, she makes a decision independently. After all individu-
als reach decisions, the group decision is determined using the simple majority rule.
To evaluate the collective performance in this situation, we introduce the concept of
effective group size, which measures how many independent voters are needed to
obtain the same majority vote accuracy realized by non-independent sequential votes.
We have found the deterioration of majority vote accuracy by imitation behavior of
voters, and quantified it by a decrease in the effective group size. We argue that this
decline in the majority vote accuracy is caused by the two factors: a decrease in the
number of independent voters and an increase in the disparity of influences of voters
on succeeding voters’ decisions.
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1 Introduction

Human society heavily depends on the performance of group decision making.
Decisions on what kind of international treaty to conclude, which presidential candi-
date to choose, and whether to raise a tax or not influence our quality of life. Further,
group decision making has recently attracted attention in not only social sciences but
also biology (e.g., [12,20,24]). This has occurred because in the biological context,
group decision accuracy can affect each group member’s reproduction and survival, as
observed inmigration decisions, foraging decisions, and decisions on collective activi-
ties [10,11]. Thus, analyzing the conditions that enhance or deteriorate group decision
accuracywould lead to a better understanding of both human and non-human societies.

In theoretical studies, Condorcet’s jury theorem has been a highly stylized bench-
mark for examining the accuracy of group decision making. This theorem considers
the situation where a group must choose the correct option from two alternatives. The
probability of choosing the correct option is assumed to be p for all voters. When each
votermakes a decision independently, the probability that themajority vote is correct is

PN ≡
N∑

h=(N+1)/2

(
N
h

)
ph(1 − p)N−h, (1)

where N (odd) is the group size. This theorem states that if p is greater (less) than
one-half, majority vote accuracy PN is an increasing (decreasing) function of the
group size N . Other extensions of this theorem exist: supermajority rule [14], hierar-
chal voting [6], game theoretic situations [1,3], and logically interconnected multiple
agenda [15,25]. Furthermore, researchers have relaxed the assumptions of indepen-
dence because, when one takes influences of social interactions into account, it is easy
to dispute the assumption of independence. Boland et al. [9] investigate how depen-
dence among voters affects majority vote accuracy bymodeling the situation where all
individuals can refer to the same opinion leader. In addition, a series of studies by Berg
[4,5] and Ladha [21–23] deals with the aggregation of dependent votes, in which the
probability of multiple individuals’ making a correct decision simultaneously differs
from the product of the probabilities of each player’s making a correct decision.

Almost all studies so far have assumed simultaneous decisionmaking or ignored the
process that generates dependence among individuals. However, in reality, the times
of making decisions are often non-simultaneous among individuals. For example, as
Banerjee [2] noted, decisions on what restaurants to choose, what academic research
topics to work on, and how many children to have are influenced by opinions of
people who have already made such decisions. Thus, imitation processes associated
with that fact should be considered. Theoretical studies on information cascade have
often dealt with non-simultaneous decision-making timings. For example, in their
influential study, Bikhchandani et al. [7] considered the sequential decision-making
situation where each individual intends to choose a correct option by referring to
the decisions of all predecessors. In this framework they examined the likelihood of
correct decisions made by succeeding individuals.

In the present study, to obtain better insight on the accuracy of non-simultaneous
collective decisionmaking,we introduce a novel concept in this research field, effective
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Effective group size of majority vote accuracy 597

group size. This concept helps us to quantitatively decompose the deterioration of
majority vote accuracy in the process of sequential decision-making into two factors.

This paper proceeds as follows. Section 2 constructs a model. Section 3 evaluates to
what extent majority vote accuracy deteriorates through a sequential decision-making
process by using multiple criteria. Section 4 provides an intuitive explanation of the
deterioration and concludes the paper.

2 Model

A group of N voters faces a dichotomous choice problem. The correct alternative
is determined a priori. Voters sequentially make decisions. Once a voter makes a
decision, she never changes it. Throughout this study, we call voters who have not
made decisions yet at a given time undecided voters. Voters who have already reached
decisions are called decided voters. We here assume naïve voters who do not know the
number of total votes for each choice. Those naïve voters do not know whether others
have already reached decisions either, before they directly refer to them. To model this
social process, our model contains undecided voters as well as decided voters.

In an elementary step of update, a focal voter is chosen randomly from the undecided
voters. With probability 1− s, the focal voter makes a decision independently. In this
case, the focal voter makes a correct/wrong decision with probabilities p and 1 − p,
respectively, and this elementary step ends. Note that p can be interpreted as the
voter’s competence or the reliability of the information that the voter receives. With
the remaining probability of s, the focal voter randomly chooses another voter from
the entire group as an exemplar. The focal voter imitates the exemplar’s decision if the
exemplar has already made a decision, and nothing happens otherwise. This ends the
elementary step. These elementary steps of update repeat until all individuals reach
decisions. We assume that at the initial state no one has made a decision. Thus, if
s = 1, the first focal voter cannot refer to anyone. Therefore, for s = 1 we assume that
the first focal voter is forced to make a decision independently, and then all subsequent
voters imitate another voter’s decision. After all individuals made decisions, the group
decision is determined using the simple majority rule. Therefore, when s = 0, the
situation is identical to the independent voting assumed in Condorcet’s jury theorem.
We call the model described above Model 1.

Among decided voters, thosewho have already reached decisions independently are
called independent voters, and those who have reached decisions by imitating another
voter are called imitators1 (see Fig. 1 for classification of the voters). Let Xt and Yt
be the number of independent voters and that of imitators at time t . We also have their

1 Our notion of imitators is the same as that of copycat voters in themodel of [17].Moreover, our assumption
that independent voters and imitators appear randomly is similar to that of [17]. However, as defined in the
first paragraph of Sect. 2, our Model 1 allows undecided voters to exist, whereas [17] does not. Owing to
the existence of undecided voters, an imitator who samples an undecided voter gives up the imitation, and
potentially becomes an independent voter next time. This assumption entails the non-trivial mathematical
result for the frequency of independent voters at the final time, which is expressed as Eq. (5) in the next
section. Furthermore, although [18] calculates the majority vote accuracy in sequential decision-making,
that paper assumes that a herder votes for a candidate obtaining majority vote at the time of the herder’s
decision-making.
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Undecided voter 
(focal voter)

Independent voter Tries to imitate

Imitator Undecided voter

1 − s

All voters

Decided voter 
(focal voter)

s

x + y 1 − x − y

1 − x − y x + y

Fig. 1 A flow diagram of Model 1. The voters expressed in black on white backgrounds are undecided
voters. The voters expressed in white on black backgrounds are decided voters

frequencies, xt (=Xt/N ) and yt (=Yt/N ), respectively. Note that 1 − xt − yt is the
frequency of undecided voters at time t .

In summary, in an elementary step of update in Model 1, the value of Xt (inde-
pendent voters) increase by one with probability 1 − s, the value of Yt (imitators)
increases by one with probability s(xt + yt ), and no changes occur with the remaining
probability.

If we focus only on the final frequencies of independent voters and imitators,
Model 1 is qualitatively the same asModel 2, which we analyze in Appendix A.

3 Results

This section analyzes the outcome of our process, with special attention to the resulting
majority vote accuracy. First, we calculate the frequency of independent voters when
all voters reach decisions (Sect. 3.1). Second, using the concept of effective group
size, we demonstrate that the smaller the frequency of independent voters, the worse
the majority vote accuracy becomes; however, this phenomenon does not explain the
full range of our results (Sect. 3.2). Third, we evaluate the resulting disparity among
independent voters’ influence on succeeding voters, which proves to be the other factor
causing the deterioration of majority vote accuracy (Sects. 3.3 and 3.4).
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Effective group size of majority vote accuracy 599

3.1 Frequency of independent voters

Although our model is actually a stochastic process, we approximate the dynamics
with differential equations because of its tractability. Note that this approximation is
reasonable for a sufficiently large N . The time-change of the frequencies, xt and yt ,
are described approximately by the following differential equations.

⎧
⎨

⎩

dxt
dt = 1 − s
dyt
dt = (xt + yt )s
x0 = y0 = 0, xt∗ + yt∗ = 1,

(2)

where t∗ represents the final time when all individuals have made decisions.
Let us derive the final time t∗. With zt ≡ xt + yt , we have

dzt
dt

= (1 − s) + szt . (3)

Note that z0 = 0 and zt∗ = 1. By solving Eq. (3) within the range of 0 ≤ t ≤ t∗, we
obtain

[
1

s
log{(1 − s) + szt }

]zt∗

z0

= [t]t∗0

⇔ t∗ = −1

s
log(1 − s). (4)

Because xt = (1 − s)t from the first equation in Eq. (2), we have the frequency of
independent voters at the final time t∗, as

xt∗ = −(1 − s)
log(1 − s)

s
. (5)

Figure 2 compares the frequency of independent voters in an individual-based
simulation with that obtained from Eq. (5). This figure indicates that our system of
differential equations provides an excellent approximation of the actual stochastic
process. Equation (5) and our simulation result show that the value of xt∗ decreases
drastically at around s = 1. This result is in a sharp contrastwith themodel ofBoland et
al. [9], where some voters make decisions independently and others imitate a decision
of the same entity simultaneously. The resulting frequency of independent decision
makers in their model was a linear function of the imitation rate, 1 − s.

3.2 Effective group size

Our model is an extension of Condorcet’s model relaxing the assumption of indepen-
dence. To what degree does a decrease in the number of independent voters explain
majority vote accuracy? This section provides a criterion to answer that question.
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Fig. 2 Frequency of independent voters when all have made their decisions. The solid line indicates the
analytical result shown in Eq. (5), and circles are obtained by individual-based simulations.We implemented
104 simulation runs for each value of s. Group size is N = 101

As stated in Sect. 1, under the assumption of independence, the probability that
the majority vote reaches the correct decision is expressed by Eq. (1). When N is
sufficiently large, it can be approximated by the central limit theorem as

PN ≈ 1√
2π

∫ ∞

− p−0.5√
p(1−p)/N

exp

[
− x2

2

]
dx

= 1

2

[
1 + erf

[
p − 0.5√

2p(1 − p)/N

]]
, (6)

where erf is the error function, erf(x) ≡ 2√
π

∫ x
0 exp(−z2)dz. Equation (6) means that

for a given number of group size N wecan estimate the accuracy ofmajority vote of that
group, PN , for the case of all votes being completely independent. ThereforeEq. (6) can
be used in the opposite direction. Let P∗ denote the majority vote accuracy obtained
in our sequential decision-making model. By substituting P∗ for PN in Eq. (6), we
can calculate the group size N that would lead to the majority vote accuracy P∗, if
all votes were independent. Hereafter, we write this N as Neff and call it the effective
group size. Neff measures howmany independent voters are needed to obtain the given
majority vote accuracy that was actually realized by dependent voters’ judgments.

Figure 3 depicts the relationship between the number of all voters, the number
of independent voters, and the effective group size. For example, when p = 0.7
and s = 0.7, even if 47 voters actually participate, approximately 24 individuals out
of 47 make a decision independently, and the majority vote accuracy of our model
corresponds to that of Condorcet’s model with approximately 13 independent voters.
By comparing the two panels of Fig. 3, we can see that the greater the imitation rate
s is, the smaller is the effective population size. Further, the gap between the number
of independent voters and the effective group size shown in Fig. 3 implies that the
deterioration of majority vote accuracy is not explained solely by the decrease in the
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Fig. 3 Relationship between the actual group size, the number of independent voters, and effective group
size. The horizontal axis indicates the actual group size N . To avoid defining a tie-breaking rule in amajority
vote,we treat only the caseswhere N is an oddnumber.The vertical axis represents the analytically-predicted
number of independent voters at the end of sequential decision making, Xt∗ (solid line, from Eq. (5)), and
effective group size Neff (black dots, from Eq. (6)). For reference, a diagonal is shown in the dashed line.
The parameters are p = 0.7 and s = 0.3 (left), and p = 0.7 and s = 0.7 (right). To obtain the majority
vote accuracy, we implemented 104 simulation runs for each pair of N and s

number of independent voters. In Sect. 3.3, we consider another factor causing the
deterioration of majority vote accuracy.

3.3 Relationship between the times at which independent voters make decisions
and their influence

The result of Sect. 3.2 indicates that the decrease in the number of independent voters
cannot alone explain the complete range of the deterioration of majority vote accuracy.
To identify another factor causing this deterioration, we pay attention to the path of
imitations. After all voters reach decisions, we align them in the order of when their
made decisions, and name them from 1st to N th voters. Imagine the case where the
kth voter imitated the j th voter’s decision ( j < k). The j th voter might have also
imitated the i th voter’s decision (i < j). In this case, we should attribute the kth
voter’s decision being the same as the i th voter’s to the fact that the j th voter imitated
the i th voter. This path of imitation implies that the influence of the i th voter reaches
not only the j th voter but also the kth voter. Starting from any given focal voter, we go
upstream along this path of imitation until we reach an independent voter, and call her
the origin of the focal voter. Note that the origin of an independent voter is herself. In
contrast, for a given independent voter, those who refer to her as their origin are called
this voter’s followers. By definition an independent voter is a follower of herself. We
call the number of followers one’s influence.

We now show that the magnitude of influence of each independent voter is charac-
terized by its order in decision-making. Recall that Xt∗ is the number of independent
voters at the final time t∗. Hereafter, we call the i th earliest independent voter out of Xt∗
independent voters the q-quantile independent voter, where q = i/Xt∗ (0 < q ≤ 1).
The growth of the frequency of the followers of this q-quantile independent voters is
described approximately by the following differential equation:
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d fq
dt

= s fq fq(tq) = 1/N , (7)

where fq is the frequency of the followers of the q-quantile independent voter, and tq
is the time at which the q-quantile independent voter reaches a decision. Equation (7)
is not valid before time tq . This equation states that the instantaneous rate of increase
of the frequency of followers is s times the frequency of followers at that time. This
simplicity comes from the fact that indirect followers are not distinguished from direct
followers in considering the diffusion of an origin’s decision. The initial condition in
Eq. (7) comes from the fact that the origin herself is also counted as her follower.
Solving this differential equation, we have

fq(t) =
{ 1

N exp[s(t − tq)] (t ≥ tq)
0 (t < tq).

(8)

Using this result, we can calculate the frequency of followers of the q-quantile inde-
pendent voter at the final time as follows:

fq(t
∗) = 1

N
exp[s(t∗ − tq)]

= 1

N
exp[s(1 − q)t∗]

= 1

N
(1 − s)q−1. (9)

Here we have used tq = qt∗ (easily shown from xt = (1 − s)t) in the second line,
and used Eq. (4) in the third line. Obviously, Eq. (9) is a monotonically decreasing
function of q. Therefore, sorting voters by the order in which they make decisions is
equivalent to sorting their influence from the largest to the smallest. Figure 4 presents
the result of individual-based simulations and the analytical approximation obtained
by Eq. (9) in one graph. As the figure illustrates, our approximation matches well the
expected frequency of followers.

3.4 Disparity of influence among independent voters

Next, we observe how the Gini coefficient of the distribution of influence among
independent voters changes as the imitation rate s increases in order to explain the
relationship between imitation intensity and inequality of influence (see Appendix B
for our reason for choosing the Gini coefficient for this purpose). Although the dis-
tribution of influence is actually discrete in our model, for simplicity, we pursue this
problem by regarding it as a continuous distribution. The Gini coefficient for contin-
uous distributions is defined as follows:

G = 1 − 2
∫ 1

0
L(q ′) dq ′, (10)
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Fig. 4 Relationship between the order inwhich an independent votermakes a decision (horizontal axis) and
the frequency of followers of the independent voter (vertical axis). Each dot is obtained by individual-based
simulations. Because the number of independent voters, Xt∗ , is essentially different in each simulation run,
we are not able to calculate the average frequency of followers for a specific value of q. Instead, the frequency
of followers in the range of q = 0.01k to q = 0.01k + 0.01(k = 0, 1, . . . , 99) is calculated for each run,
and its average over runs is regarded as the average frequency of followers of the (0.01k + 0.005)-quantile
independent voter. Error bars represent one standard deviation. For each value of s, 104 simulation runs
were performed to obtain average frequencies. Solid lines are the approximated analytical results obtained
in Eq. (9). Group size is N = 501

where we define q ′ ≡ 1 − q. That is, the q-quantile earliest independent voter is the
q ′-quantile latest independent voter. Moreover, L(q ′) is the Lorenz function, which
represents the proportion of the followers of 0-quantile to q ′-quantile independent
voters [26] (see also [16]). If all voters have the same numbers of followers, the graph
of the Lorenz function (called Lorenz curve) lies on the diagonal. Thus, Eq. (10)
suggests that theGini coefficient is obtained by doubling the area between the diagonal
line and the Lorenz curve. A possible value of G ranges from 0 to 1. G = 0 means
perfect equality (i.e., all voters have the same number of followers), and G = 1 means
perfect inequality (i.e., a single voter is followed by all the remaining voters).

From Eq. (9), we have the Lorenz function as:

L(q ′) =
∫ q ′
0 (1 − s)1−ξdξ
∫ 1
0 (1 − s)1−ξdξ

= (1 − s)1−q ′ − (1 − s)1

(1 − s)0 − (1 − s)1

= (1 − s){(1 − s)−q ′ − 1}
s

. (11)

Therefore, from Eq. (10), we have the Gini coefficient G as a function of the imitation
rate s as
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Fig. 5 Relationship between the disparity in influences and the majority vote accuracy. The horizontal axis
stands for the Gini coefficient, which is obtained from the distribution of influences among independent
voters, with s varied from 0.01 to 0.99 at an interval of 0.01. The vertical axis indicates the majority vote
accuracy. The solid line is the best fit from the single regression, whose coefficient is 0.9941. We performed
104 simulation runs for each value of s. Group size N = 51. Competence p = 0.6

G(s) = 1 − 2
∫ 1

0

(1 − s){(1 − s)−q ′ − 1}
s

dq ′

= 2

[
1

s
+ 1

log(1 − s)
− 1

2

]
. (12)

We see that G(s) → 0 as s → 0 and that G(s) → 1 as s → 1. We can also prove the
monotonicity of the Gini coefficient as the function of imitation rate s (see Appendix C
for the proof).

Figure 4 indicates that the earlier a voter makes a decision, the stronger influence
that he obtains. It also shows that the imitation rate s increases the inequality of influ-
ences. Gini coefficients in Fig. 5 demonstrate that this inequality worsens majority
vote accuracy.

4 Discussion and concluding remarks

This study models the sequential decision-making situation wherein each voter makes
a decision at a different time referring to a predecessor’s decision, investigates factors
that worsen the majority vote accuracy, and evaluates to what degree those factors
are responsible. As a result, we find that the deterioration of majority vote accuracy
is attributed to two types of mechanisms. First, majority vote accuracy deteriorates
as the number of imitators increases, as Fig. 3 illustrates. To understand this process
intuitively, let us consider an extreme situation, where a single independent voter is
imitated by all the remaining voters. According to Condorcet’s jury theorem, majority
vote accuracy increases as the group size increases. Nevertheless, in this case, the
collective decision is the same as a single voter’s decision, and therefore the group loses
the advantage of size. This outcome is compatiblewith [9], who assumed simultaneous
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correlated voting, although our results differ quantitatively from theirs, as mentioned
in Sect. 3.1.

Second, the disparity of influence among independent voters worsens the majority
vote accuracy, as Figs. 4 and 5 illustrate. Let us consider the following situation
to explain this mechanism. There are three voters making decisions independently.
Let us assume that the weights for the three votes are 100, 2, and 1, respectively. The
difference among theweights for their votes corresponds to the inequality of influences
in our model. Although there are actually three voters, this situation is the same as the
case wherein only the first voter casts a vote. That is, because we adopt the simple
majority rule, the last two voters cannot affect the collective decision, and the first
voter’s single vote represents a collective decision. Clearly, the probability of a single
voter making an incorrect decision is higher than that of the unweightedmajority votes
by three voters. Again, this group does not take advantage of its size. This outcome
is related to the study by [27], which addressed the optimal weighted majority rule.
They proved that the weighted majority voting system in which the weight for the
vote by individual i with competence pi is log[pi/(1 − pi )] maximizes the majority
vote accuracy under the assumption that all competences are larger than one-half.
Therefore, under the assumption of equally skilled individuals, as in the present study,
the majority rule of distributing weights equally to everyone is the optimal weighted
majority rule. The inequality of influences represents the deviation from the optimum.
In summary, as the imitation rate s increases, the firstmechanism is driven, and then the
number of independent voters decreases. Further, the inequality of influences among
independent voters is generated with increasing s. We have evaluated to what extent
the combination of these twomechanismsworsens themajority vote accuracy by using
the novel criterion called effective group size.

To highlight the second mechanism, Appendix D compares the majority vote accu-
racies of two models, which generate the same frequency of independent voters when
all voters reach decisions. One is ourModel 3, which is a sequential decision-making
model. The other is the Model 1 in [9], which describes a simultaneous decision-
making situation. We find that the two models generate different majority vote accu-
racies. This implies that in considering the group decision accuracy, not only the fre-
quency of independent voters but also the process throughwhich the frequency is deter-
mined or the circumstance in which voters are involved should be taken into account.

Several theoretical studies have previously investigatedweighted voting (e.g., [27]).
However, in these studies, weights are determined exogenously, and the researchers
do not discuss how the weights are determined through social interactions. In con-
trast, the current study investigates how the distribution of influences, which is
qualitatively equivalent to the distribution of weights, generated endogenously in the
process of sequential decision-making affects majority vote accuracy. Consequently,
we demonstrate that the distribution of influences among independent voters follows
an exponential distribution (Eq. (9)). In Appendix E, we show that the conditional
distribution of influences among all voters given the voter is an independent voter
follows a power-law relationship (see Eq. (32)).

Our model might be too simple to explain the micro-foundation that worsens group
decision accuracy. For example, in the presentmodel, voters’ competence is assumed to
be homogeneous. However, in the real world, individuals with different competences
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make collective decisions. The assumption of heterogeneous competence raises a
new research question (cf., [28]). Studying how the correlation between a voter’s
competence and imitation rate affects majority vote accuracy would be interesting.
Moreover, we treat naïve imitations, whereas in the sequential decision-making model
by [7] each individual makes a decision by calculating the probability of each option
to be correct based on the observation of all predecessors’ actions. Future studies
should investigate how different micro-level decision-making processes affect group
decision accuracy by incorporating empirical studies. Last, our idea of tracing the path
of imitation and then deriving the disparity of influence requires only the imitation
rate s, and does not the distribution of competences. Therefore, our idea is expected
to be a useful tool for future works.
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Appendices

Appendix A: A model entailing qualitatively identical results to those shown in
the main text

Let us call the following model Model 2, and show that this model is qualitatively
identical to Model 1.

In an elementary step of update in this newmodel, a focal voter is randomly chosen
from the undecided voters. With probability 1 − s the focal voter makes a decision
independently, and the step ends. With the remaining probability of s, the focal player
randomly chooses as an exemplar from the entire group. If the exemplar is a decided
voter, the focal voter imitates the exemplar’s decision and the step ends. Otherwise, the
focal voter’s imitation fails, so he reconsiders whether he makes a decision indepen-
dently or by imitation (chosen with probabilities 1−s and s, respectively), and repeats
the same procedurewithin the same update step until he becomes a decided voter. That
is, once an undecided voter is chosen as a focal voter, he is never put back into the
undecided voters’ pool. Thus, in each elementary step of update one undecided voter
always becomes a decided one; there are no steps at which a focal undecided voter
is left undecided. The probability that the value of Xt increases by one in an update
step is 1−s

1−s+(xt+yt )s
, and the probability that the value of Yt increases by one in an

update step is (xt+yt )s
1−s+(xt+yt )s

. The following system of differential equations describes
that situation:
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⎧
⎪⎨

⎪⎩

dxt
dt = 1−s

(1−s)+s(xt+yt )
dyt
dt = s(xt+yt )

(1−s)+s(xt+yt )
x0 = y0 = 0, xt∗ + yt∗ = 1.

(13)

Because of the factor 1/[(1 − s) + s(xt + yt )], the changes of xt and yt in Model 2
are faster than in Model 1. Indeed, this system never reaches a point where all voters
reach decisions within a finite time.

It is known that there always exists the change of time scale τ = φ(t) (where φ

is a strictly monotonically increasing) by which the two n-dimensional differential
equations ẋ = B(x, t)g(x) and ẋ = g(x) can be transformed into each other if
B(x, t) is strictly positive, where x is a point in Rn (Exercise 4.1.2 in [19]). Thus, we
can cancel the term 1/[(1 − s) + s(xt + yt )] in Eq. (13) without changing the shape
of trajectory of the system. The resulting system is the same that in as Eq. (2).

Appendix B: A reason for using the Gini coefficient to measure the inequality of
influences

Initially, we implement individual-based simulations under the same setup as in
Fig. 3 and analyze the relationship between majority vote accuracy and the distri-
bution of the frequencies of followers of independent voters, by using five established

criteria: the Gini coefficient
∑Xt∗

i=1
∑Xt∗

j=1 |Fi−Fj |
2F̄ X2

t∗
(0.9941, 0.9974), Shannon’s entropy

−∑Xt∗
i=1 Fi log Fi (0.8027, 0.9473), Simpson’s diversity index 1− ∑Xt∗

i=1 F
2
i (0.6770,

0.8885), the inverse Simpson’s diversity index 1/
∑Xt∗

i=1 F
2 (0.8948, 0.9739), and the

standard deviation of Fi (0.7764, 0.9561), where Xt∗ is the number of independent vot-
ers at the time of the last voter’s decision making, Fi is the number of followers of the
i th earliest independent voter, and F̄ is the arithmetic means of Fi . The two numbers
shown after each criterion are the coefficients of determination of a single regression
and of a polynomial regression (quadratic model). All regression coefficients are sta-
tistically significant at the 0.1 % level. As a result of individual-based simulations
and single regression analyses, we find an almost linear relationship between the Gini
coefficient and majority vote accuracy (Fig. 3). For this reason, we adopt the Gini
coefficient in expectation of its tractability.

Appendix C: Proof for the monotonicity of Gini coefficient

We prove that the following inequality is satisfied for any s.

dG(s)

ds
= 2

(
− 1

s2
+ 1

(1 − s){log(1 − s)}2
)

> 0. (14)

Instead of proving Ineq. (14) directly, we show that

α(s) = s2 − (1 − s){log(1 − s)}2 > 0. (15)
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First, we calculate the first and the second order derivatives the left-hand side of
Ineq. (15) as follows.

dα(s)

ds
= 2s − [−{log(1 − s)}2 − 2 log(1 − s)], (16)

d2α(s)

ds2
= 2

1 − s
(−s − log(1 − s)). (17)

Since d3α(s)
ds3

= −2 log(1−s)
(1−s)2

> 0, Eq. (17) is the monotonic increasing function of s.
Moreover, when s = 0, Eq. (17) is 0, and Eq. (17) goes toward positive infinity as
s approaches 1. Therefore, Eq. (17) is positive for any s, which means that Eq. (16)
is the monotonic increasing function. Furthermore, when s = 0, Eq. (16) is 0, and
Eq. (16) goes toward positive infinity as s approaches 1. Therefore, Eq. (16) is positive
for any s, which implies that the left-hand side of Ineq. (15) is a monotonic increasing
function. Since α(0) = 0 and that α(1) = 1, the left-hand side of Ineq. (15) is always
positive for any s. Thus, Ineq. (14) holds for any s, which means that Eq. (12) is the
monotonic increasing function of s.

Appendix D: Comparison between themajority vote accuracy in twomodels that
cause the same frequency of independent voters

To emphasize the second mechanism for the deterioration of majority vote accuracy
(i.e., disparity of influence), let us provide a model generating the same frequency
of independent voters as the Model 1 in Boland et al. [9]. Hereafter we call our new
modelModel 3 (see Fig. 6) and call Boland et al’s Model 1 simply “Boland’s model”
to avoid confusion. Model 3 repeats the following procedure. First, a focal voter is
chosen randomly from undecided voters. Second, the focal voter makes a decision
independently with probability 1 − s, and otherwise (with probability s) the focal
voter chooses an exemplar from decided voters to imitate her decision. We assume
that the first voter always has to make a decision independently. The critical difference
from ourModel 1 is that imitation never fails inModel 3 because an exemplar is always
a decided voter. This stochastic process is approximated by the following differential
equations.

⎧
⎨

⎩

dxt
dt = 1 − s
dyt
dt = s
x0 = y0 = 0, xt∗ + yt∗ = 1.

(18)

We denote by ζt the frequency of decided voters at time t , which is equal to xt + yt .
Let us consider the dynamics of the frequency of decided voters ζt . From Eq. (18),

we have

ζ̇ = 1 and ζ0 = 0. (19)
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Undecided voter
(focal voter)

Independent voter Imitator

1 − s

Undecided 
voters

Randomly chosen

s

Fig. 6 A flow diagram of Model 3

We can easily have the relationship between the frequency of decided voters and the
time, as

ζt = t. (20)

Overtly, t∗ = 1, and therefore the frequency of independent voters at time t∗ is
xt∗ = 1 − s. That is different from Eq. (5), but the same as Boland’s model.

Next, we compare the majority vote accuracy of Model 3 with that of Boland’s
model. In Boland’s model, a group faces a dichotomous choice problem. This group
has N (even) voters and a single opinion leader. That is, the entire group size, N + 1,
is odd. Each voter and the leader make decisions correctly with probability p. First,
the leader makes a decision independently. After that each voter imitates the leader’s
decision with probability s; otherwise, he makes a decision independently. Although
two voters’ decisions can be correlated, two voters’ decisions conditioned on the
leader’s decision are independent, which can be interpreted as a simultaneous decision
making situation. The group level decision is determined by simple majority rule. The
majority vote accuracy in Boland’s model is

PN (p, s)

≡ P(Leader is correct)P(Majority of the voters is correct or a tie | Leader is correct)

+P(Leader is wrong)P(Majority of the voters is correct | Leader is wrong)

= p
N∑

h=N/2

(
N
h

)
[s + (1 − s)p]h[(1 − s)(1 − p)]N−h
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Fig. 7 Comparison between the majority vote accuracies of Model 3 and Boland’s model. The horizontal
axis indicates the group size N . The vertical axis stands for the majority vote accuracy. Filled circles
represent the results of Model 3, which are average values obtained by individual-based simulations with
104 runs for each parameter set. Open circles are obtained by numerical calculations using Eq. (21). The
parameters are p = 0.7 and s = 0.2, which satisfies inequality (22) (left), and p = 0.7 and s = 0.5, which
violate inequality (22) (right)

+(1 − p)
N∑

h=N/2+1

(
N
h

)
[(1 − s)p]h[s + (1 − s)(1 − p)]N−h . (21)

Boland [8] shows that if p > 1/2, PN (p, s) → 1 as N goes to infinity whenever

s < 1 − 1

2p
(22)

is satisfied.
Under the assumption of p > 1/2, s + (1 − s)p is always greater than 1/2. Thus,

by Condorcet’s jury theorem, the first term of Eq. (21) converges to p as N tends to
infinity. If (1 − s)p is less than 1/2, the second part of Eq. (21) converges to 0 as N
tends to infinity. Therefore, if Eq. (22) is not satisfied, PN (p, s) converges to p (see
also [13] for a related work).

Figure 7 indicates that the majority vote accuracies of Model 3 and Boland’s model
are different even though the frequencies of independent voters at the final time in
the two models are identical to each other. This difference is caused purely by the
difference between the disparities of influence in the two models. To see that, let
us calculate the growth of the frequency of an origin’s followers. It is formulated
approximately by the following differential equation:

d fq
dt

= s fq/t fq(tq) = 1/N , (23)

where, as with Eq. (7), fq is the frequency of followers of the q-quantile independent
voter, and tq is the time at which the q-quantile independent voter reaches a decision.
This equation states that the instantaneous rate of increase of the frequency of followers
is s times the percentage of the frequency of followers to the frequency of decided
voters at a moment of time (notice that in Eq. (18), xt + yt = t). Solving Eq. (23), we
have
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fq(t
∗) = 1

N
q−s . (24)

This is a decreasing function of q. Interestingly, Eq. (24) is power-law distribution,
whereas the counterparts of Models 1 and 2 are exponential distributions (Eq. (9)).

Defining q ′ ≡ 1 − q, the Lorenz curve L(q ′) is derived as

L(q ′) =
∫ q ′
0 (1 − k)−sdk

∫ 1′
0 (1 − k)−sdk

= −(1 − q ′)1−s + 1

1 − s

/
1

1 − s
. (25)

Using this result in Eq. (10), we have the Gini coefficient as

G(s) = 1 − 2
∫ 1

0
[1 − (1 − q ′)1−s] dq ′ = s

2 − s
. (26)

On the other hand, in Boland’s model, the single leader is the only one who has more
than one followers. Each of (1 − s)N independent voters has no other follower than
himself. Therefore, the Gini coefficient of Boland’s model is derived as

G(s) = 1 − 2

⎡

⎣

⎛

⎝
(1−s)N∑

i=1

1

(1 − s)N + 1

i

N + 1

⎞

⎠ + 1

(1 − s)N + 1
· 1

⎤

⎦

= 1 − 2 · 1

(1 − s)N + 1

[
1
2 (1 − s)N {(1 − s)N + 1}

N + 1
+ 1

]

= 1 − 2

[
1

2
(1 − s)

N

N + 1
+ 1

(1 − s)N + 1

]
. (27)

The right-hand side of Eq. (27) converges to s as N tends to infinity, which is greater
than that of (26) for any s. This means that the disparity of influence is greater than
that inModel 3. For this reason, the majority vote accuracy of Boland’s model is worse
than that of Model 3.

Appendix E: Relationship between the order in which an independent voter
makes a decision and the expected number of his followers

In Sect. 3.4, we find the approximated distribution of influences among independent
voters. In a similar manner, we can derive the distribution of the numbers of followers
of the κ-quantile voter on the condition that he is an independent voter. That is, we
examine how many followers the κ-quantile voter would obtain if he were an inde-
pendent voter. Notice the difference between the κ-quantile voter and the q-quantile
independent voter. The former is mathematically defined as follows. All voters can be
characterized by the time at which they make decisions regardless of whether they are
independent voters or imitators, which means that they can be specified uniquely by
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the order of decisions. We call the i th earliest voter out of all N voters the κ-quantile
voter, with κ = i/N (0 < κ ≤ 1).

Let ξt denote the frequency of decided voters at time t , which is identical to xt + yt .
Now let us consider the dynamics of the frequency of decided voters ξt . From Eq. (2),
we have

ξ̇ = (1 − s) + sξt and ξ0 = 0. (28)

Solving this differential equation, we have

ξt = 1 − s

s
(exp[st] − 1). (29)

To obtain the time at which the κ-quantile voter makes a decision, we solve the
following equation:

1 − s

s
(exp[stκ ] − 1) = κ, (30)

then

tκ = 1

s
log

(
sκ

1 − s
+ 1

)
. (31)

Substituting Eq. (31) for tq in Eq. (7), we have the required distribution at final time
t∗, as

φκ(t∗) = 1

N
(sκ + 1 − s)−1, (32)

where φκ(t∗) is the frequency of followers that the κ-quantile voter obtains at final
time t∗ on the condition that he is an independent voter. Interestingly, this is a power-
law distribution, while the distribution of influences among independent voters is an
exponential distribution. Figure 8 shows that our approximation works well.

Moreover, we obtain the Gini coefficient of that distribution. First, the Lorenz curve
L(κ ′) is derived as

L(κ ′) =
∫ κ ′
0 {s(1 − ξ) + 1 − s}−1dξ
∫ 1
0 {s(1 − ξ) + 1 − s}−1dξ

=
1
s log(1 − sκ ′) − 1

s log(1 − 0)
1
s log(1 − s) − 1

s log(1 − 0)

= log(1 − sκ ′)
log(1 − s)

, (33)

whereκ ′ is defined as 1−κ . Inserting this result into the definition of theGini coefficient
(Eq. (10)), we have

123



Effective group size of majority vote accuracy 613

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

F
re

qu
en

cy
 o

f f
ol

lo
w

er
s

s = 0.6

s = 0.8

s = 0.7

s = 0.9

κ-quantile voter

Fig. 8 Relationship between the order in which a voter makes a decision (horizontal axis) and his influence
on the condition that he is an independent voter (vertical axis). Solid lines are the approximated analytical
results obtained in Eq. (32). Error bars represent one standard deviation. We performed 104 simulation
runs for each value of s. Group size N = 501. To improve the visibility, we select 101 of 501 samples at
equal intervals

G(s) = 1 − 2
∫ 1

0

log(1 − sκ ′)
log(1 − s)

dκ ′

= 1 − 2

log(1 − s)

(
−1 +

(
1 − 1

s

)
log(1 − s)

)

= 2

[
1

s
+ 1

log(1 − s)
− 1

2

]
. (34)

Interestingly, this is identical to Eq. (12).
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