60 research outputs found

    Search for non-Poissonian behavior in nuclear beta-decay

    Full text link
    We performed two independent counting experiments on a beta-emitting source of Sm151 by measuring the gamma-photon emitted in a fraction of the decays. For counting times ranging from 10**-3 to 5.12*10**4 seconds, our measurements show no evidence of deviations from Poissonian behavior and, in particular, no sign of 1/f noise. These measurements put strong limits on non-Poissonian components of the fluctuations for the subset of decays accompanied by gamma, and corresponding limits for the total number of beta-decays. In particular, the magnitude of a hypothetical flicker floor is strongly bounded also for the beta-decay. This result further constrains theories predicting anomalous fluctuations in nuclear decays.Comment: 10 pages, LaTeX, plus 2 figures added as separate uuencoded compressed postscript files. To appear in Phys. Rev. E 55 (1997

    Multi-phase outflows in Mkn 848 observed with SDSS-MaNGA Integral Field Spectroscopy

    Get PDF
    The characterisation of galaxy-scale outflows in terms of their multi-phase nature, amount, and effects of flowing material is crucial to place constraints on models of galaxy evolution. This study can proceed only with the detailed investigation of individual targets. We present a spatially resolved spectroscopic optical data analysis of Mkn 848, a complex system consisting of two merging galaxies at z~0.04 that are separated 7.5 kpc (projected distance). Motivated by the presence of a multi-phase outflow in the north-west system revealed by the SDSS integrated spectrum, we analysed the publicly available MaNGA data, which cover almost the entire merging system, to study the physical properties of cool and warm gas in detail. Galaxy-wide outflowing gas in multiple phases is revealed for the first time in the two merging galaxies. We also detect spatially resolved resonant NaID emission associated with the outflows. The derived outflow energetics may be consistent with a scenario in which both winds are accelerated by stellar processes and AGN activity, although we favour an AGN origin given the high outflow velocities and the ionisation conditions observed in the outflow regions. Deeper observations are required, however, to better constrain the nature of these multi-phase outflows. Outflow energetics in the north-west system are strongly different between the ionised and atomic gas components, the latter of which is associated with mass outflow rate and kinetic and momentum powers that are 1-2 dex higher; those associated with the south-east galaxy are instead similar. Strong kp-scale outflows are revealed in an ongoing merger system, suggesting that feedback can potentially impact the host galaxy even in the early merger phases. The characterisation of the neutral and ionised gas phases has proved to be crucial for a comprehensive study of the outflow phenomena.Comment: 19 pages, 14 figures, accepted for publication in A&

    Recent Advances on Anilato-Based Molecular Materials with Magnetic and/or Conducting Properties

    Get PDF
    The aim of the present work is to highlight the unique role of anilato-ligands, derivatives of the 2,5-dioxy-1,4-benzoquinone framework containing various substituents at the 3 and 6 positions (X = H, Cl, Br, I, CN, etc.), in engineering a great variety of new materials showing peculiar magnetic and/or conducting properties. Homoleptic anilato-based molecular building blocks and related materials will be discussed. Selected examples of such materials, spanning from graphene-related layered magnetic materials to intercalated supramolecular arrays, ferromagnetic 3D monometallic lanthanoid assemblies, multifunctional materials with coexistence of magnetic/conducting properties and/or chirality and multifunctional metal-organic frameworks (MOFs) will be discussed herein. The influence of (i) the electronic nature of the X substituents and (ii) intermolecular interactions i.e., H-Bonding, Halogen-Bonding, π-π stacking and dipolar interactions, on the physical properties of the resulting material will be also highlighted. A combined structural/physical properties analysis will be reported to provide an effective tool for designing novel anilate-based supramolecular architectures showing improved and/or novel physical properties. The role of the molecular approach in this context is pointed out as well, since it enables the chemical design of the molecular building blocks being suitable for self-assembly to form supramolecular structures with the desired interactions and physical propertie

    Y 2 O 3:Eu and the Mössbauer isomer shift coefficient of Eu compounds from ab-initio simulations

    Get PDF
    We report on a full potential density functional theory characterization of Y2O3 upon Eu doping on the two inequivalent crystallographic sites 24d and 8b. We analyze local structural relaxation, electronic properties and the relative stability of the two sites. The simulations are used to extract the contact charge density at the Eu nucleus. Then we construct the experimental isomer shift (IS) versus contact charge density calibration curve, by considering an ample set of Eu compounds: EuF3, EuO, EuF2, EuS, EuSe, EuTe, EuPd3 and the Eu metal. The, expected, linear dependence has a slope of α = 0.054 mm s−1 Å− 3, which corresponds to nuclear expansion parameter ΔR/R = 6.0 × 10−5. α allows to obtain an unbiased and accurate estimation of the IS for any Eu compound. We test this approach on two mixed-valence compounds Eu3S4 and Eu2SiN3, and use it to predict the Y2O3:Eu IS with the result +1.04 mm s−1 at the 24d site and +1.00 mm s−1 at the 8b site

    Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

    Get PDF
    Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Variant annotation was supported by software resources provided via the Caché Campus program of the InterSystems GmbH to Alexander Teumer

    Genetic insights into resting heart rate and its role in cardiovascular disease

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development

    Short range order of iron sites

    No full text
    corecore