17 research outputs found

    A draft physical map of a D-genome cotton species (Gossypium raimondii)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, <it>Gossypium hirsutum </it>and <it>G. barbadense</it>, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor <it>Gossypium raimondii </it>for complete sequencing.</p> <p>Results</p> <p>A whole genome physical map of <it>G. raimondii</it>, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to <it>Arabidopsis thaliana </it>(AT) and <it>Vitis vinifera </it>(VV) whole genome sequences.</p> <p>Conclusion</p> <p>Several lines of evidence suggest that the <it>G. raimondii </it>genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the <it>Arabidopsis </it>and <it>Vitis vinifera </it>genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.</p

    Data from: Types, levels, and patterns of low-copy DNA sequence divergence, and phylogenetic implications, for Gossypium genome types

    No full text
    To explore types, levels, and patterns of genetic divergence among diploid Gossypium (cotton) genomes, 780 cDNA, genomic DNA, and SSR loci were re-sequenced in Gossypium herbaceum (A1 genome), G. arboreum (A2), G. raimondii (D5), G. trilobum (D8), G. sturtianum (C1) and an outgroup, Gossypioides kirkii. Divergence among these genomes ranged from 7.32 polymorphic base pairs per 100 between G. kirkii and G. herbaceum (A1) to only 1.44 between G. herbaceum (A1) and G. arboreum (A2). SSR loci are least conserved with 12.71 polymorphic base pairs and 3.77 polymorphic sites per 100 base pairs, while ESTs are most conserved with 3.96 polymorphic base pairs and 2.06 sites. SSR loci also exhibit the highest percentage of 'extended polymorphisms' (spanning multiple consecutive nucleotides). The A genome lineage was particularly rapidly evolving, with the D genome also showing accelerated evolution relative to the C genome. Unexpected asymmetry in mutation rates was found, with much more transition than transversion mutation in the D genome after its divergence from a common ancestor shared with the A genome. This large quantity of orthologous DNA sequence strongly supports a phylogeny in which A-C divergence is more recent than A-D divergence, a subject that is of much importance in view of A-D polyploid formation being key to the evolution of the most productive and finest-quality cottons. Loci that are monomorphic within A or D genome types, but polymorphic between genome types, may be of practical importance for identifying locus-specific DNA markers in tetraploid cottons including leading cultivars

    Supplemental Figures

    No full text
    This file includes three supplemental figures which are related to the paper. The figure legends are given below each figure

    Supplemental Tables

    No full text
    This file includes four supplemental tables which are relevant to the paper. The supplemental table 1 lists the locus name, GenBank accession number, primer sequence and annealing temperature for all loci studied in this research. Supplemental table 2 is about the diversities revealed in the pair wise comparison including extended and single deletion, insertion, SNP, polymorphic sites, and polymorphic base pairs. Supplemental table 3 is about SNPs, polymorphic sites, and polymorphic base pairs between A and D ancestral genomes. Supplemental table 4 is about diversities revealed in the three way comparison including extended and single deletion, insertion, SNP, polymorphic sites, and polymorphic base pairs

    Multi-Phase US Spread and Habitat Switching of a Post-Columbian Invasive, \u3ci\u3eSorghum halepense\u3c/i\u3e

    Get PDF
    Johnsongrass (Sorghum halepense) is a striking example of a post-Columbian founder event. This natural experiment within ecological time-scales provides a unique opportunity for understanding patterns of continent-wide genetic diversity following range expansion. Microsatellite markers were used for population genetic analyses including leaf-optimized Neighbor-Joining tree, pairwise FST, mismatch analysis, principle coordinate analysis, Tajima\u27s D, Fu\u27s F and Bayesian clusterings of population structure. Evidence indicates two geographically distant introductions of divergent genotypes, which spread across much of the US ingeophylogeny, gene flow patterns can be inferred to have involved five phases. Centers of genetic diversity have shifted from two introduction sites separated by ~2000 miles toward the middle of the range, consistent with admixture between genotypes from the respective introductions. Genotyping provides evidence for a `habitat switch\u27 from agricultural to non-agricultural systems and may contribute to both Johnsongrass ubiquity and aggressiveness. Despite lower and more structured diversity at the invasion front, Johnsongrass continues to advance northward into cooler and drier habitats. Association genetic approaches may permit identification of alleles contributing to the habitat switch or other traits important to weed/invasive management and/or crop improvement

    A Draft Physical Map of a D-genome Cotton Species (Gossypium raimondii)

    No full text
    Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT) and Vitis vinifera (VV) whole genome sequences. Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.This article is from BMC Genomics 11 (2010): 395, doi:10.1186/1471-2164-11-395. Posted with permission.</p

    Supplemental Material for Kong et al., 2018

    No full text
    File S1 contains genotypes for the bin map. File S2 contains genotypes for the original map. File S3 contains the genomic positional information for bin markers. File S4 and S5 contain phenotypes from 2011 and 2012 respectively. Supplemental tables are included in the docx

    Multi-Phase US Spread and Habitat Switching of a Post-Columbian Invasive, <i>Sorghum halepense</i>

    Get PDF
    <div><p>Johnsongrass (<i>Sorghum halepense</i>) is a striking example of a post-Columbian founder event. This natural experiment within ecological time-scales provides a unique opportunity for understanding patterns of continent-wide genetic diversity following range expansion. Microsatellite markers were used for population genetic analyses including leaf-optimized Neighbor-Joining tree, pairwise FST, mismatch analysis, principle coordinate analysis, Tajima’s D, Fu’s F and Bayesian clusterings of population structure. Evidence indicates two geographically distant introductions of divergent genotypes, which spread across much of the US in <200 years. Based on geophylogeny, gene flow patterns can be inferred to have involved five phases. Centers of genetic diversity have shifted from two introduction sites separated by ~2000 miles toward the middle of the range, consistent with admixture between genotypes from the respective introductions. Genotyping provides evidence for a ‘habitat switch’ from agricultural to non-agricultural systems and may contribute to both Johnsongrass ubiquity and aggressiveness. Despite lower and more structured diversity at the invasion front, Johnsongrass continues to advance northward into cooler and drier habitats. Association genetic approaches may permit identification of alleles contributing to the habitat switch or other traits important to weed/invasive management and/or crop improvement.</p></div
    corecore