158 research outputs found

    Weathering Characteristics of Sloping Fields in the Three Gorges Reservoir Area, China

    Get PDF
    For the purpose of understanding the weathering characteristics of surface layers in purple mudstone sloping fields of the Three Gorges Reservoir area of China, oxide content of major elements, composition of clay minerals, magnetic susceptibility, and difference in weathering characteristics of surface layers under different slope gradients were determined. The results showed that the oxide content of Si, Al, and Fe ranged from 60% to 75% and the weathering coefficient with depth showed no trend along the slope gradient. Also, for gentle (10° and 15°) and intermediate (25° and 40°) slopes the clay relative diffraction peak for kaolinite at the surface between 0–10 cm and 10–20 cm declined with an increase in slope gradient, while the relative diffraction peak for kaolinite in weathered layers on steep slopes (50° and 60°) disappeared altogether. Magnetic susceptibility decreased with increasing depth and, for a given depth layer, decreased with an increase in slope gradient. Analysis of the oxide content, weathering coefficients, clay minerals, and magnetic susceptibility showed that in the Three Gorges Reservoir area, the pedogenesis of the weathering layer in purple mudstone sloping fields was weak with weaker soil formation going from gentle slope to steep slope

    Integrated Assessment of Heavy Metal Contamination in Sediments from a Coastal Industrial Basin, NE China

    Get PDF
    The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems

    Co-evolution of soil and water conservation policy and human–environment linkages in the Yellow River Basin since 1949

    Get PDF
    Policy plays a very important role in natural resource management as it lays out a government framework for guiding long-term decisions, and evolves in light of the interactions between human and environment. This paper focuses on soil and water conservation (SWC) policy in the Yellow River Basin (YRB), China. The problems, rural poverty, severe soil erosion, great sediment loads and high flood risks, are analyzed over the period of 1949–present using the Driving force–Pressure–State–Impact–Response (DPSIR) framework as a way to organize analysis of the evolution of SWC policy. Three stages are identified in which SWC policy interacts differently with institutional, financial and technology support. In Stage 1 (1949–1979), SWC policy focused on rural development in eroded areas and on reducing sediment loads. Local farmers were mainly responsible for SWC. The aim of Stage 2 (1980–1990) was the overall development of rural industry and SWC. A more integrated management perspective was implemented taking a small watershed as a geographic interactional unit. This approach greatly improved the efficiency of SWC activities. In Stage 3 (1991 till now), SWC has been treated as the main measure for natural resource conservation, environmental protection, disaster mitigation and agriculture development. Prevention of new degradation became a priority. The government began to be responsible for SWC, using administrative, legal and financial approaches and various technologies that made large-scale SWC engineering possible. Over the historical period considered, with the implementation of the various SWC policies, the rural economic and ecological system improved continuously while the sediment load and flood risk decreased dramatically. The findings assist in providing a historical perspective that could inform more rational, scientific and effective natural resource management going forwar

    Fortran 90 pointers vs. “Cray” pointers

    No full text
    • …
    corecore